Home
Class 12
MATHS
int((1)/(e))^(e)|ln x|dx=...

int_((1)/(e))^(e)|ln x|dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_((1)/(e))^(e)|log x|dx=

If I=int_((1)/(e))^(e)|log x|(dx)/(x^(2)), then I equals (A) 2 (B) (2)/(e)(C)2(1-(1)/(e))(D)0

The value of int_((1)/(e ))^(e )|log x|dx is equal to -

[int_(1/e)^(e)|log x|dx=[ (A) e^(-1)-1, (B) 2(1-1/e), (C) 1-1/e, (D) None of thes ]]

int_((1)/(e))^(1)|(ln x)/(x)|dx=

int_(1)^(e )x^(x)dx+ int_(1)^(e )x^(x)log x dx=

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

int_(e^(-1))^(e^(2))|(ln x)/(x)|dx