Home
Class 13
MATHS
" The lines "(x-3)/(1)=(y-1)/(2)=(z-3)/(...

" The lines "(x-3)/(1)=(y-1)/(2)=(z-3)/(-lambda)" and "(x-1)/(lambda)=(y-2)/(3)=(z-1)/(4)" are coplanar,if the value of "lambda" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The lines (x-3)/(1)=(y-1)/(2)=(z-3)/(-lambda) and (x-1)/(lambda)=(y-2)/(3)=(z-1)/(4) are coplanar, if value of lambda is

If the lines (x-1)/(1)=(y-3)/(1)=(z-2)/(lambda) and (x-1)/(lambda)=(y-3)/(2)=(z-4)/(1) intersect at a point, then the value of lambda^(2)+4 is equal to

If the lines (x-1)/(1)=(y-3)/(1)=(z-2)/(lambda) and (x-1)/(lambda)=(y-3)/(2)=(z-4)/(1) intersect at a point, then the value of lambda^(2)+4 is equal to

If lines (x-1)/3=(y-1)/(2lambda)=(z-3)/2 and (x-1)/(3lambda)=(y-1)/1=(z-6)/-5 are perpendicular , find the value of lambda

The number of distinct real values of lambda for which the lines (x-1)/(1)=(y-2)/(2)=(z+3)/(lambda^(2)) and (x-3)/(1)=(y-2)/(lambda^(2))=(z-1)/(2) are coplanar is

If the lines (x-2)/(1) = (y-3)/(1) = (4-z)/(lambda) and (x-1)/(lambda) = (y-4)/(2) = (z-5)/(1) are intersect each other than lambda = ..........

If the lines (x-1)/(2)=(y-1)/(lambda)=(z-3)/(0) and (x-2)/(1)=(y-3)/(3)=(z-4)/(1) are perpendicular, then lambda is

If the lines (x-1)/(2)=(y-1)/(lambda)=(z-3)/(0) and (x-2)/(1)=(y-3)/(3)=(z-4)/(1) are perpendicular, then lambda is

Find the value of lambda, so that the lines (x-1)/(1)=(y-2)/(2)=(z+lambda)/(3) and (x+1)/(2)=(y-1)/(3)=(z-3)/(1) are coplanar Also find the equation of the plane containing them.