Home
Class 12
MATHS
[y=sqrt(x+1)-sqrt(x-1)" ara qualle "],[(...

[y=sqrt(x+1)-sqrt(x-1)" ara qualle "],[(x^(2)-1)(d^(2)y)/(dx^(2))+x^((dy)/(dx))=(1)/(4)y]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sqrt(x+1)-sqrt(x-1) , prove that (x^(2)-1)(d^(2)y)/(dx^(2))+x(dy)/(dx)-(1)/(4)y=0 .

If y=sqrt(x+1)- sqrt(x-1) , prove that (x^(2)-1)(d^(2)y)/(dx^(2))+x(dy)/(dx)-(y)/(4)=0

If y=sqrt(x+1)-sqrt(x-1) ,prove that (x^(2)-1)(d^(2)y)/(dx^(2))+x(dy)/(dx)-(y)/(4)=0

If y=sqrt(x+1)-sqrt(x-1) , then prove that (x^(2)-1)(d^(2)y)/(dx^(2))+x(dy)/(dx)-1/4y=0 .

If y=sqrt(x+1)+sqrt(x-1)," then: "2sqrt(x^(2)-1)*(dy)/(dx)=

If y=log[x+sqrt(x^(2)+1)], prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=(x+sqrt(1+x^(2)))^(n) then (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)

If y=[x+sqrt(x^(2)-1)]^(15)+[x-sqrt(x^(2)-1)]^(15) then (x^(2)-1)(d^(2)y)/(dx^(2))+x(dy)/(dx) is eqaul to

If y=sqrt(x+1)+sqrt(x-1), prove that sqrt(x^(2)-1)(dy)/(dx)=(1)/(2)y