Home
Class 11
MATHS
The value of (1+i sqrt(3))^2=...

The value of `(1+i sqrt(3))^2`=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (1+i sqrt(3))^(3)=

The value of (2 + sqrt(3))/(2- sqrt(3)) + (2- sqrt(3))/(2 + sqrt(3)) + ( sqrt(3) + 1)/(sqrt(3) -1) is

Find the value of (-1+sqrt(-3))^(2)+(-1-sqrt(-3))^(2)

the value of ((1+i sqrt(3))/(1-i sqrt(3)))^(6)+((1-i sqrt(3))/(1+i sqrt(3)))^(6) is

the value of |((3-i sqrt(2))^(2))/(1+i2)| is equal to (i) (11)/(sqrt(5)) (ii) (18)/(sqrt(7)) (iii) (5)/(sqrt(11)) (iv) (13)/(sqrt(3))

If w is the cube root of unity then find the value ((-1+i sqrt(3))/(2))^(18)+((-1-i sqrt(3))/(2))^(18)