Home
Class 12
MATHS
The value of lim(x->0)[(sin(|x|)/x] is...

The value of `lim_(x->0)[(sin(|x|)/x]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)[(sin x)/(x)] is (where [.] denotes greatest integer function)

The value of lim_(x rarr0)[((sin(|x|))/(|x|)] equals

The value of lim_(x rarr0)[((sin(|x|))/(x)] is

What is the value of lim_(xto0) (sin|x|)/(x) ?

The value of lim_(x rarr0)[(x)/(sin x)] is

The value of lim x rarr0[(sin x)/(x)] is

The value of lim_(x rarr0)[(sin(sgn x))/(sgn x)]

The value of lim_(x rarr0)[(2008sin x)/(x)]+[(2009tan x)/(x)], (where [x] denotes the greatest integer <=x)

The value of lim_(x rarr0)e^(-sin8(x)/(x))

The value of lim_(x to 0) ("sinx"/x)^("sin x"/"x-sinx") is