Home
Class 11
MATHS
loga/(y-z)=logb/(z-x)=logc/(x-y) then va...

`loga/(y-z)=logb/(z-x)=logc/(x-y)` then value of `abc=`

Promotional Banner

Similar Questions

Explore conceptually related problems

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) then value of abc=

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If y=a^(1/(1-log_a x)), z=a^(1/(1-log_a y)), then the value of a^(1/(1-log_a z)) is (i) x/y (ii)y/x (iii)z/y (iv) x

If x /(y+z) = y/(z + x) = z /(x + y) , then find the value of each fraction.

If x(x+y+z)=9,y(x+y+z)=16and z(x+y+z)=144 then value of x will be?

If x=y^(a),backslash y=z^(b) and z=x^(c) then find the value of abc.