Home
Class 11
MATHS
If log(2)(3x-1)leq3 then number of integ...

If `log_(2)(3x-1)leq3` then number of integer values of `x` will be:

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of integral values of x satisfying |x^2-1|leq3 is

If 3^(log_(2)x)-2x-3=0, then the number of value of x satisfying the expression is

The number of integer values of x such that |x-2|+|x+3|>|2x+1|dots

If 2^((log_(2)3)^(x))=3^((log_(3)2)^(x)) then the value of x is equal to

If log_(3) .(x^(3))/(3) - 2 log_(3) 3x^(3)=a-b log_(3)x , then find the value of a + b.

If 3log_(2)x+log_(2)27=3 then the value of x is

Number of integers satisfying 2^(log_(2)(x-3)<4) is

The total number of integral value of x satisfying the equation x ^(log_(3)x ^(2))-10=1 //x ^(2) is

If x=(4)/(9) satisfies the equation log_(a)(x^(2)-x+2)>log_(a)(-x^(2)+2x+3) then the sum of all possible distinct values of [x] is (where [.] represetns the greatest integer function) =

The number of integral values of a for which f(x)=log(log_((1)/(3))(log_(7)(sin x+a))) is defined for every real value of x is