Home
Class 12
MATHS
I=int(0)^(4)(x^(2)+2x+4)dx...

`I=int_(0)^(4)(x^(2)+2x+4)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(4)(x+e^(2x))dx

int_(0)^(4)|x^(2)-4x+3|dx

" 2."int_(0)^(4)[x^(2)+e^(2x)]dx

int_(0)^(4)(2x+3)dx

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).sin x dx , then :

int_(0)^(2)(x+4)dx

Evaluate : (i) int_(-oo)^(oo) (dx)/(x^(2)+2x+2) , (ii) int_(sqrt(2))^(oo)(dx)/(xsqrt(x^(2)-1)) , (iii) int_(0)^(4)(x^(2))/(1+x)dx (iv) int_(0)^(pi//2) sqrt(costheta)sin^(3)theta

" (2) "int_(0)^(2)(2x)/(x^(2)-4)dx

int_(0)^(2)(1)/(4+x-x^(2))dx

If I_(1)=int_(0)^(2)(x^(2))/([x^(2)-4x+4]+[x^(2)])dx and I_(2)=int_(0)^(2)(4)/([x^(2)-4x]+[x^(2)-4])dx then I_(1)-I_(2)=