Home
Class 12
MATHS
Given that:(1 + cos alpha) (1 + cos beta...

Given that:`(1 + cos alpha) (1 + cos beta) (1 + cos gamma) = (1 - cos alpha) (1 - cos beta) (1 - cos gamma),` Show that one of the values of each member of this equality is `sin alpha sin beta sin gamma.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos alpha + cos beta + cos gamma = 3 then sin alpha + sin beta + sin gamma =

lfsin alpha + sin beta + sin gamma = 0 = cos alpha + cos beta + cos gamma then sum cos (alpha-beta) =

If cos alpha + cos beta + cos gamma =3 , " then " sin alpha + sin beta + sin gamma =

If sin alpha + sin beta + sin gamma =3, then the value of (cos alpha + cos beta+ cos gamma) is-

If cos alpha+ cos beta+ cos gamma + cos alpha cos beta cos gamma=0 , show that sin alpha (1+ cos beta cos gamma)=+- sin beta sin gamma .

If cos alpha+ cos beta + cos gamma = sin alpha+ sin beta +sin gamma= 0 , then :

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then cos ^ (2) alpha + cos ^ (2) beta + cos ^ (2) gamma is

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then show that cos 3 alpha + cos 3 beta + cos 3 gamma = 3 cos ( alpha + beta + gamma)

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then show that cos ( alpha + beta) + cos ( beta + gamma) + cos ( gamma + alpha) = 0