Home
Class 12
MATHS
In triangle, A B Cif2a^2b^2+2b^2c^2=a^4+...

In triangle, `A B Cif2a^2b^2+2b^2c^2=a^4+b^4+c^4,` then angle B is equal to `45^0` (b) `135^0` `120^0` (d) `60^0`

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle, A B Cif2a^2b^2+2b^2c^2=a^2+b^4+c^4, then angle B is equal to 45^0 (b) 135^0 120^0 (d) 60^0

In triangle,ABC if 2a^(2)b^(2)+2b^(2)c^(2)=a^(4)+b^(4)+c^(4) then angle B is equal to 45^(0)(b)135^(0)120^(@)(d)60^(@)

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to

In a triangle ABC if a^4+b^4+c^4=2c^2(a^2+b^2) , then angle C is equal to (A) 60^0 (B) 120^0 (C) 45^0 (D) 135^0

In a triangle A B C , if B=30^0a n d\ c=sqrt(3)\ b , then A can be equal to 45^0 (b) 60^0 (c) 90^0 (d) 120^0

In a triangle A B C , if B=30^0a n d\ c=sqrt(3)\ b , then A can be equal to (a) 45^0 (b) 60^0 (c) 90^0 (d) 120^0

If a^4 + b^4 + c^4 = 2c^2 (a^2 + b^2), prove that angle ACB = 45^@ or 135^@ .

In a triangle ABC , a^4+b^4+c^4=2c^2(a^2+b^2) prove that C=45^@ or 135^@