Home
Class 10
MATHS
21xx19=(...)^2-(...)^2...

`21xx19=(...)^2-(...)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify (4.54xx44+4.54xx21)/((8.77)^2-(4.23)^2)

Simplify and write the following in the exponential form: (i) ((-3)^(5)xx4^(6)xx4)/((-3)^(2)xx4^(9)) (ii) (11^(4)xx17^(3)xx19^(5))/(11^(2)xx17^(2)xx19^(2))

21+3.7xx2.9=?

Fill in the blanks: (i) (-23)/(17)xx (18)/(35)= (18)/(35) xx (.......) (ii) -38xx(-7)/(19)=(-7)/(19)xx (.....) (iii) ((15)/(7)xx (-21)/(10)) xx (-5)/(6) = (........) xx ((-21)/(10) xx (-5)/(6)) (iv) (-12)/(5) xx ((4)/(15)xx (25)/(-16))=((-12)/(5)xx (4)/(15))xx(........)

Express the following product in exponential form. a. (-5)^(14)xx(-7)^(14) b. (a)^(19)xx(-b)^(19) c. (3)^(21)xx5^(21) d. (6)^(9)xx(5)^(9) e. (x)^(13)xx(-y)^(13) f. (-7)^(32)xx(-9)^(32)

What is the 21^(st) term of the arithmetic sequence 21, 20, 19,......?

The sum (7)/(2^2xx5^2)+13/(5^2xx8^2)+19/(8^2xx11^2)+…10 terms is S, then the value of 1024(S) is __________.

The sum (7)/(2^2xx5^2)+13/(5^2xx8^2)+19/(8^2xx11^2)+…10 terms is S, then the value of 1024(S) is __________.

5.2 xx 2.1