Home
Class 11
MATHS
(ii) (n!)/((n-r)!r!)+(n!)/((n-r+1)!(r-1)...

(ii)` (n!)/((n-r)!r!)+(n!)/((n-r+1)!(r-1)!)=((n+1)!)/(r!(n-r+1)!)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (i) (n!)/(r!)=n(n-1)(n-2)...(r+1) (ii) (n-r+1)*(n!)/((n-r+1)!)=(n!)/((n-r)!) (iii) (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)=((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)= ((n+1)!)/ (r!(n-r+1)!) .

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that (n-r+1)((n!)/((n-r+1)!))=((n!)/((n-r)!))

Prove that ((n-1)!)/((n-r-1)!)+r.((n-1)!)/((n-r)!)=(n!)/((n-r)!)

Prove that (n-r+1)(n!)/((n-r+1)!)=(n!)/((n-r)!)

Prove that (n-r+1)(n!)/((n-r+1)!)=(n!)/((n-r)!)

Show that : (n !) / (r ! (n - r) !) + (n !) / ((r - 1) ! (n - r + 1) !) = ((n + 1) !) / (r ! (n - r +1) !)

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)