Home
Class 12
MATHS
If a,b,c be real, then f(x)=|(x+a^2,ab,a...

If `a,b,c` be real, then `f(x)=|(x+a^2,ab,ab),(ab,x+b^2,bc),(ac,bc,x+c^2)|` is decreasing on

Promotional Banner

Similar Questions

Explore conceptually related problems

if a,b,c are real then find the intervial in which f(x)=|{:(x+a^2,ab,ac),(ab,x+b^2,bc),(ac,bc,x+c^2):}| is decreasing.

|(a^(2)+x,ab,ac),(ab,b^(2)+x,bc),(ac,bc,c^(2)+x)|

If a,b,c are real numbers, then find the intervals in which f(x) = {:|(x+a^2,ab,ac),(ab,x+b^2,bc),(ac,bc,x+C^2)| is striclty increasing or decreasing.

If a, b, c are real numbers, then find the intervals in which : f(x)=|(x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2))| is strictly increasing or decreasing.

If f(x)={:abs((x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2))):} , then find f'(x).

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=