Home
Class 11
MATHS
Prove that tan((pi)/(12))+tan((pi)/(6))+...

Prove that `tan((pi)/(12))+tan((pi)/(6))+tan((pi)/(12))tan((pi)/(6))=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan((11pi)/12)

Prove that "tan"(pi)/(12) "tan"(pi)/(16) "tan"(5pi)/(12)"tan"(7pi)/(16)=1

tan((11 pi)/(12))

tan((pi)/(10))+tan((3 pi)/(10))+tan((7 pi)/(10))+tan((9 pi)/(10))=

Prove that tan (pi/12)tan((5pi)/12)tan ((7pi)/12)tan((11pi)/12)=1

Prove that tan ((pi) / (12)) * tan (5 (pi) / (12)) * tan (7 (pi) / (12)) * tan (11 (pi) / (12)) = 1

Prove: (ii) tan ((pi)/12) tan ((5 pi)/12) tan ((7 pi)/12) tan ((11 pi)/12) = 1

Consider the following : 1. tan((pi)/(6)) 2. tan((3pi)/(4)) 3. tan((5pi)/(4)) tan((2pi)/(3)) What is the correct order ?

tan x tan(x+(pi)/(3))+tan x tan((pi)/(3)-x)+tan(x+(pi)/(3))tan(x-(pi)/(3 ))=

tan((pi)/(20))tan(3(pi)/(20))tan(5(pi)/(20))tan(7(pi)/(20))tan(9(pi)/ (20))