Home
Class 12
MATHS
If a x^2+b/xgeqc for all positive x wher...

If `a x^2+b/xgeqc` for all positive `x` where `a >0` and `b >0,` show that `27 a b^2geq4c^3dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ax^(2)+(b)/(x)>=c for all positive x where a>0 and b>0, show that 27ab^(2)>=4c^(3).

If ax^2+b/xgec for all positive x where agt0andbgtc show that 27ab^2ge4c^3

If ax+(b)/(x)>=c for all positive x, where a,b,c>0, then-

If ax+b/x >= c for all positive x, where a, b, c > 0, then-

If ax+b/x >= c for all positive x, where a, b, c > 0, then-

If ax+(b)/(x)>=c for all positive xa,b>0, then

If a x+b/xgeqc for all positive x where a ,\ b ,\ >0 , then a b<(c^2)/4 (b) geq(c^2)/4 (c) a bgeqc/4 (d) none of these

If a x+b/xgeqc for all positive x where a ,\ b ,\ >0 , then a b<(c^2)/4 (b) geq(c^2)/4 (c) a bgeqc/4 (d) none of these

If ax+(b)/(x)>=c for all positive x where a,b,>0, then ab =(c^(2))/(4) (c) ab>=(c)/(4) (d) none of these

If ax+(b)/(x) ge c , for all positive values of x, then show that, 4abgec^(2) , where a,b,c are positive constants.