Home
Class 14
MATHS
If alpha and beta are the roots of x^2=x...

If `alpha` and `beta` are the roots of `x^2=x+1` then `alpha^2/beta-beta^2/alpha=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of x^2-2x+3=0 then alpha^2beta+ beta^2 alpha =….

If alpha , beta are the roots of x^2 +x+1=0 then alpha // beta + beta // alpha =

If alpha,beta are the roots of x^(2)+x+1=0 ,then (alpha)/(beta)+(beta)/(alpha)=

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

IF alpha , beta are the roots of x^(2)-x+2=0 then alpha ^ 2 beta + alpha beta ^2 =

If alpha and beta are the roots of x^(2)+4x+6=0 and N=1/((alpha)/(beta)+(beta)/(alpha)) then N=

If alpha and beta are the roots of x^(2)+4x+6=0 and N=1/((alpha)/(beta)+(beta)/(alpha)) then N=

If alpha , beta are the roots of ax^2 + bx + c=0 then alpha beta ^(2) + alpha ^2 beta + alpha beta =

If alpha and beta are the roots of 2x^(2) - x - 2 = 0 , then (alpha^(3) + beta^(-3) + 2alpha^(-1) beta^(-1)) is equal to