Home
Class 12
MATHS
[" If "0<x<pi/2" and "sin^(n)x+cos^(n)x>...

[" If "0=1" ,then "],[[" (a) "n in[2,oo)," (b) "(-oo,2]],[" (c) "n in[-1,1]," (d) None of these "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log)_(0. 3)(x-1) (a) (2,oo) (b) (1,2) (c) (-2,-1) (d) None of these

Let f(x)=sqrt(|x|-{x})(w h e r e{dot} denotes the fractional part of (x)a n dX , Y are its domain and range, respectively). Then (a) X in (-oo,1/2) and Y in (1/2,oo) (b) X in (-oo in ,1/2)uu[0,oo)a n dY in (1/2,oo) (c) X in (-oo,-1/2)uu[0,oo)a n dY in [0,oo) (d) none of these

Let f(x)=sqrt(|x|-{x})(w h e r e{dot} denotes the fractional part of (x)a n dX , Y are its domain and range, respectively). Then (a) X in (-oo,1/2) and Y in (1/2,oo) (b) X in (-oo in ,1/2)uu[0,oo)a n dY in (1/2,oo) (c) X in (-oo,-1/2)uu[0,oo)a n dY in [0,oo) (d) none of these

Let f(x)=sqrt(|x|-{x})(w h e r e{dot} denotes the fractional part of (x)a n dX , Y are its domain and range, respectively). Then (a) X in (-oo,1/2) and Y in (1/2,oo) (b) X in (-oo in ,1/2)uu[0,oo)a n dY in (1/2,oo) (c) X in (-oo,-1/2)uu[0,oo)a n dY in [0,oo) (d) none of these

Let f(x)=sqrt(|x|-{x})(w h e r e{dot} denotes the fractional part of (x)a n dX , Y are its domain and range, respectively). Then (a) X in (-oo,1/2) and Y in (1/2,oo) (b)X in (-oo in ,1/2)uu[0,oo)a n dY in (1/2,oo) (c)X in (-oo,-1/2)uu[0,oo)a n dY in [0,oo) (d) none of these

The values of a for which the integral int_0^2|x-a|dxgeq1 is satisfied are (a) (2,oo) (b) (-oo,0) (c) (0,2) (d) none of these

The values of a for which the integral int_0^2|x-a|dxgeq1 is satisfied are (a) (2,oo) (b) (-oo,0) (c) (0,2) (d) none of these

The values of a for which the integral int_0^2|x-a|dxgeq1 is satisfied are (a) (2,oo) (b) (-oo,0) (c) (0,2) (d) none of these

If f(x) = sqrt((1)/(tan^(-1)(x^(2)-4x + 3))) , then f(x) is continuous for a. (1, 3) b. (-oo, 0) c. (-oo, 1) uu (3, oo) d. None of these

The values of a for which the integral int_(0)^(2)|x-a|dx>=1 is satisfied are (a) (2,oo) (b) (-oo,0)(c)(0,2)(d) none of these