Home
Class 12
MATHS
A function f : R -> R^+ satisfies f(x+y)...

A function `f : R -> R^+` satisfies `f(x+y)= f(x) f(y) AA x in R` If `f'(0)=2` then `f'(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

A function f : R to R satisfies the equation f(x+y) = f (x) f(y), AA x, y in R and f (x) ne 0 for any x in R . Let the function be differentiable at x = 0 and f'(0) = 2. Show that f'(x) = 2 f(x), AA x in R. Hence, determine f(x)

A function f : R to R satisfies the equation f(x+y) = f (x) f(y), AA x, y in R and f (x) ne 0 for any x in R . Let the function be differentiable at x = 0 and f'(0) = 2. Show that f'(x) = 2 f(x), AA x in R. Hence, determine f(x)

lf f: R rarr R satisfies, f(x + y) = f(x) + f(y), AA x, y in R and f(1) = 4, then sum_(r=1)^n f(r) is

A function f : R to R satisfies the equation f(x + y) = f(x), f(y) for all x, y in R , f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f' (0) = 2. Find (f'(x))/f(x)

Let a real valued function f satisfy f(x + y) = f(x)f(y)AA x, y in R and f(0)!=0 Then g(x)=f(x)/(1+[f(x)]^2) is

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AA x,y in R and f(0)!=0 ,then f(x) is an even function f(x) is an odd function If f(2)=a, then f(-2)=a If f(4)=b, then f(-4)=-b

f: R^(+) rarr R is continuous function satisfying f(x/y)=f(x) - f (y) AA x, y in R^(+) . If f'(1) = 1, then

A function f : R rarr R satisfies the equation f(x+y) = f(x). f(y) for all x y in R, f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f'(0) = 2 , then prove that f' = 2f(x) .

A function f : R rarr R satisfies the equation f(x+y) = f(x). f(y) for all x y in R, f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f'(0) = 2 , then prove that f' = 2f(x) .

A function f : R rarr R satisfies the equation f(x+y) = f(x). f(y) for all x y in R, f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f'(0) = 2 , then prove that f' = 2f(x) .