Home
Class 12
MATHS
If a , b >0 , then minimum value of y=(b...

If `a , b >0` , then minimum value of `y=(b^2)/(a-x)+(a^2)/x` in `(0,a)` is `(a+b)/a` (b) `(a b)/(a+b)` `1/a+1/b` (d) `((a+b)^2)/a`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a , b >0 , then minimum value of y=(b^2)/(a-x)+(a^2)/x in (0,a) is (a) (a+b)/a (b) (a b)/(a+b) (c) 1/a+1/b (d) ((a+b)^2)/a

If a,b>0, then minimum value of y=(b^(2))/(a-x)+(a^(2))/(x)in(0,a) is (a+b)/(a) (b) (ab)/(a+b)(1)/(a)+(1)/(b) (d) ((a+b)^(2))/(a)

If a,b>0 then the minimum value of y=(b^(2))/(a-x)+(a^(2))/(x),0

If (a)/(b)+(b)/(a)=2, then the value of (a-b) is (a) 1 (b) 2(c)-1 (d) 0

If (x+1)/(x-1)=(a)/(b) and (1-y)/(1+y)=(b)/(a), then the value of (x-y)/(1+xy) is (2ab)/(a^(2)-b^(2)) (b) (a^(2)-b^(2))/(2ab) (c) (a^(2)+b^(2))/(2ab) (d) (a^(2)-b^(2)backslash)/(ab)

If a b+b c+c a=0 , then what is the value of (1/(a^2-b c)+1/(b^2-c a)+1/(c^2-a b)) ? (a) 0 (b) 1 (c) 3 (d) a+b+c

Find the minimum value of (a+1/a)^(2) +(b+1/b)^(2) where a gt 0, b gt 0 and a+b = sqrt(15)

Find the minimum value of (a+1/a)^(2) +(b+1/b)^(2) where a gt 0, b gt 0 and a+b = sqrt(15)

Let f(x)=(1+b^2)x^2+2b x+1 and let m(b) the minimum value of f(x)dot As b varies, the range of m(b) is (a) [0,1] (b) (0,1/2] (c) [1/2,1] (d) (0,1]

If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x is equal to [a , b , in (0,1)] (a)(a-b)/(1+a b) (b) b/(1+a b) (c) b/(1+a b) (d) (a+b)/(1-a b)