Home
Class 11
MATHS
The standard deviation of the data: ...

The standard deviation of the data: `x :` 1 `a` `a^2` ... `a^n` `f:` `^n C_0` `^n C_1` `^n C_2` ... `^n C_n` is (a)`((1+a^2)/2)^n-((1+a^2)/2)^n` (b) `((1+a^2)/2)^(2n)-((1+a^2)/2)^(2n)` (c) `((1+a^)/2)^(2n)-((1+a^2)/2)^n` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The standard deviation of the data: x : , 1, a , a^2 , ..., a^n f: , ^n C_0 , ^n C_1 , ^n C_2 , ..., ^n C_n is ((1+a^2)/2)^n-((1+a)/2)^(2n) (b) ((1+a^2)/2)^(2n)-((1+a^2)/2)^(2n) (c) ((1+a)/2)^(2n)-((1+a^2)/2)^n (d) none of these

Find sum of sum_(r=1)^n r . C (2n,r) (a) n*2^(2n-1) (b) 2^(2n-1) (c) 2^(n-1)+1 (d) None of these

lim_(x rarr1)((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^(2)),n in N, equals ^2nP_(n)(b)^(2n)C_(n)(c)(2n)!(d) none of these

""^(2n)C_(n+1)+2. ""^(2n)C_(n) + ""^(2n) C_(n-1) =

Prove that C_(0)-(1)/(3)*C_(1)+(1)/(5)*C_(2) - …+(-1)^(n)*(1)/(2n+1)C_(n) =(2^(2n)(n !)^(2))/((2n+1)!)

Prove that (^(2n)C_0)^2+(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Prove that "^(2n)C_1 + ^(2n)C_3 + .... + ^(2n)C_(2n-1) = 2^(2n-1)