Home
Class 11
MATHS
If f(x) = (a-x^n)^(1/n), a > 0 and n in ...

If `f(x) = (a-x^n)^(1/n), a > 0 and n in N`, then prove that `f(f(x)) = x` for all x.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(a-n^(n))^(1//n) where a gt 0 and n in N , then f[f(x)] is equal to :

If f(x)=(a-x^n)^(1/n) then find f(f(x))

If f(x)=(p-x^(n))^((1)/(n)),p>0 and n is a positive integer then f[f(x)] is equal to

If f(x)=x^(n)-a^(n)",then find "f'(1) .

If f(x)=x^(n)&f'(1)=10, find the value of n.

If f(x)=1+x^(m)(x-1)^(n), m , n in N , then f'(x)=0 has atleast one root in the interval