Home
Class 12
MATHS
theta(0)cos x cos ydy+sin x sin ydx=0...

theta(0)cos x cos ydy+sin x sin ydx=0

Promotional Banner

Similar Questions

Explore conceptually related problems

cosx cos ydy - sin x sin y dx =0

The solution of the differential equation sin x cos ydy+cos x sin ydx=0 is

Solve the differential equation cos ydy+cos x sin ydx=0

Find the solution of the differential equation cos ydy+cos x sin ydx=0 given that y=pi/2, when x=pi/2

sinx sin y dx+cos x cos ydy=0

The general solution of e^(x) cos ydx-e^(x) sin ydy=0 is

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta ne 0 and x sin theta - y cos theta = 0 , then value of (x^(2) + y^(2)) is :

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

If f(theta)=|(cos^(2) theta, cos theta sin theta, -sin theta),(cos theta sin theta, sin^(2) theta, cos theta),(sin theta, -cos theta, 0)| then f((pi)/12)=