Home
Class 9
MATHS
The sum of real values of y satisfying t...

The sum of real values of y satisfying the equations `x^2 +x^2y^2 + x^2y^4 = 525 and x + xy + xy^2 = 35` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of integral pairs (x, y) satisfying the equation 2x^(2)-3xy-2y^(2)=7 is :

The sum of x^4 – xy + 2y^2 and -x^4 + xy + 2y^2 is

If x and y satisfy te equation xy-2x^(2)-9x+3y-16=0 then

If x and y satisfy te equation xy-2x^(2)-9x+3y-16=0 then

If x and y are the real numbers satisfying the equation 12sinx + 5cos x = 2y^2 - 8y +21 , then the value of 12cot((xy)/2) is:

If x and y are the real numbers satisfying the equation 12sinx + 5cos x = 2y^2 - 8y +21 , then the value of 12cot((xy)/2) is:

If x and y are the real numbers satisfying the equation 12sinx + 5cos x = 2y^2 - 8y +21 , then the value of 12cot((xy)/2) is:

If x and y are the real numbers satisfying the equation 12sinx + 5cos x = 2y^2 - 8y +21 , then the value of 12cot((xy)/2) is:

Find the real numbers (x,y) that satisfy the equation: xy^(2) = 15x^(2) +17xy + 15y^(2) x^(2)y = 20x^(2) + 3y^(2)