Home
Class 10
MATHS
" Bhard "sin theta=p" And "cos theta=q" ...

" Bhard "sin theta=p" And "cos theta=q" so "p^(2)+q^(2)" Values of "

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta=p and cos theta=q then find p^(2)+q^(2) is

cos p theta=cos q theta,p!=q, thetn

If tan theta+sin theta= p, tan theta-sin theta=q and p gt q " then show that "p^(2)-q^(2) =4 sqrt(pq) .

If sin theta=p and cos theta=q then the value of (p-2p^(3))/(2q^(3)-q) is

If cos theta + sin theta = p and sec theta + cosec theta = q , prove that q (p^(2) - 1) = 2p .

If sin theta+cos theta=p and sec theta+cos ec theta=q show that q(p^(2)-1)=2p

If sin theta + cos theta = and sin^(3) theta + cos^(3)theta = q, then p(p^(2) - 3) =

Given : sin theta = p/q , find cos theta + sin theta in terms of p and q.

If tan theta +sin theta = p and tan theta-sin theta = q , prove that p^(2)-q^(2)=4sqrt(pq)

Let P = {theta , sin theta - cos theta = sqrt(2)cos theta} and Q = {theta , sin theta + cos theta = sqrt(2) sin theta) be two sets. Then