Home
Class 9
MATHS
5,p(x)=3x^(4)-6x^(2)-8x-2,8(x)=x-2...

5,p(x)=3x^(4)-6x^(2)-8x-2,8(x)=x-2

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=3x^(4)-6x^(2)+8x-2,g(x)=x-2 .

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=2x^(4)+x^(3)-8x^(2)-x+6,g(x)=2x-3

If p(x)=8x^(3)-6x^(2)-4x+3 and g(x) = (x)/(3)-(1)/(4) then check whether g (x) is a factor of p(x) or not.

The product of uncommon real roots of the p polynomials p(x)=x^(4)+2x^(3)-8x^(2)-6x+15 and q(x)=x^(3)+4x^(2)-x-10 is :

Check whether g(x) is a factor of p(x) by dividing the first polynomial by the second polynomial: (i) p(x) = 4x^(3) + 8x + 8x^(2) +7, g(x) =2x^(2) -x+1 , (ii) p(x) =x^(4) - 5x -2, g(x) =2-x^(2) , (iii) p(x) = 13x^(3) -19x^(2) + 12x +14, g(x) =2-2x +x^(2)

Subtract: 7x^(4)-5x^(3)+4x^(2)+3x-3 from 6x^(4)-4x^(3)-8x^(2)-2x+7

Simplify : 15x-[8x^(2)+3x^(2)-{8x^(2)-(4-2x-x^(3))-5x^(3)}-2x]