Home
Class 12
MATHS
34)int(2^(x))/(1-4^(x))dx=?...

34)int(2^(x))/(1-4^(x))dx=?

Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(2))/(1-x^(4))dx

If int (2^(x))/(1 - 4^(x)) dx = K log |(1 + 2^(x))/(1 -2^(x))| + C then K =

Evaluate int(2^(x))/(sqrt(1-4^(x)))dx

If int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-1)(2^(x))+c , then : k=

If int(2^(x))/(sqrt(1-4^(x)))dx=Ksin^(-1)(2^(x))+C , then K is equal to

int(2^(x))/(sqrt(1-4^(x)))dx=k sin^(-1)2^(x)+c, then k=

If int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-1)(2^(x))+c , then : k=

If int(2^(x))/(sqrt(1-4^(x)))dx=K Sin^(-1)(2^(x))+c , then K=

int(2^x)/(sqrt(1-4^x))dx=ksin^(- 1)2^x+c , then k =

int(1+x^(2))/(1+x^(4))dx=