Home
Class 12
MATHS
(i)3*1^2+4*2^2+5*3^2++(n+2)*n^2...

`(i)3*1^2+4*2^2+5*3^2++(n+2)*n^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Match the following . {:(,"ColumnI",,"ColumnII"),((i) ,1^(2) +2^(2) +3^(2) +....+n^(2) ,(a) ,[(n(n+1))/(2)]^(2)),((ii) , 1^(3) +2^(3) +3^(3) +...+n^(3) ,(b), n(n+1)),((iii),2+4+6+...+2n,( c),(n(n+1)(2n+1))/(6)),((iv),1+2+3+...+n,(d),(n(n+1))/(2)):}

Match the following . {:(,"ColumnI",,"ColumnII"),((i) ,1^(2) +2^(2) +3^(2) +....+n^(2) ,(a) ,[(n(n+1))/(2)]^(2)),((ii) , 1^(3) +2^(2) +3^(2) +...+n^(3) ,(b), n(n+1)),((iii),2+4+6+...+2n,( c),(n(n+1)(2n+1))/(6)),((iv),1+2+3+...+n,(d),(n(n+1))/(2)):}

The sum of the series 1+4+3+6+5+8+ upto n term when n is an even number (n^2+n)/4 2. (n^2+3n)/2 3. (n^2+1)/4 4. (n(n-1))/4 (n^2+3n)/4

[(^nC_0+^n C_3+)-1/2(^n C_1+^n C_2+^n C_4+^n C_5]^2 + 3/4(^n C_1-^n C_2+^n C_4 +)^2= a. 3 b. 4 c. 2 d. 1

Find the value of n in each of the following: (2^2)^n=(2^3)^4 (ii) 2^(5n)-:2^n=2^4 (iii) 2^n^(-5)xx5^n^(-4)=5

Prove that: (i)\ sqrt(1/4)+\ (0. 01)^(-1/2)-\ (27)^(2/3)=3/2 (ii)\ (2^n+\ 2^(n-1))/(2^(n+1)-2^n)=3/2

1+2.2+3.2^(2)+4.2^(3)+...+n*2^(n-1) = (i) 1+ (1+n) 2^(n) (ii) 1- (1+n) 2^(n) (iii) 1- (1-n) 2^(n) (iv) 1+ (1-n) 2^(n)