Home
Class 11
MATHS
C1/C0+2C2/C1+3C3/C2+............+nCn/C(n...

`C_1/C_0+2C_2/C_1+3C_3/C_2+............+nC_n/C_(n-1)=(n(n+1))/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

(C_(1))/(C_(0))+2(C_(2))/(C_(1))+3(C_(3))/(C_(2))+.........+n(C_(n))/(C_(n-1))=(n(n+1))/(2)

If (1+x)^(n)=C_(0)+C_(1)x+…..+C_(n)x^(n) , then (C_(1))/(C_(0))+(2C_(2))/(C_(1))+(3C_(3))/(C_(2))+....+(nC_(n))/(C_(n-1)) is :

(C_(0)+C_(1))(C_(1)+C_(2))(C_(2)+C_(3))(C_(3)+C_(4)).........(C_(n-1)+C_(n))=(C_(0)C_(1)C_(2).....C_(n-1)(n+1)^(n))/(n!)

C_(0)-(C_(1))/(2)+(C_(2))/(3)-............(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

prove that C_(0)C_(n)+C_(1)C_(n-1)+C_(2)C_(n-2)+.........+C_(n)C_(0)=2nC_(n)

C0-(C1)/(2)+(C2)/(3)-............+(-1)^(n)(Cn)/(n+1)=(1)/(n+1)

If quad (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+...+C_(n)x^(n), then C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+...+C_(n-2)C_(n)=((2n)!)/((n!)^(2)) b.((2n)!)/((n-1)!(n+1)!) c.((2n)!)/((n-2)!(n+2)!) d.none of these

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

If (1+x)^n=C_0+C_1x+C_2x^2+C_3x^3+...+C_nx^n then prove that 2.C_0+2^2C_1/2+2^3C_2/3+2^4C_3/4+...+2^(n+1)C_n/(n+1)=(3^(n+1)-1)/(n+1)