Home
Class 12
MATHS
tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)...

`tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

Q.solve for x ,tan ^(-1)(2x)+tan^(-1)(3x)=(pi)/(4)

tan^(-1)(x+2)+tan^(-1)(x-2)=(pi)/(4);x>0

If tan^(-1)(2x)+tan^(-1)(3x)=(pi)/(4) , then find the value of x.

If tan^(-1)(a/x)+tan^(-1)(b/x)+tan^(-1)(c /x)+tan^(-1)(d/x)=(pi)/(2) then x^(4)-x^(2)(Sigma ab)+abcd=

If tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6), then prove that x^(2)=2sqrt(3).

Solve for x:tan^(-1)3x+tan^(-1)2x=(pi)/(4)

IF tan ^(-1) 2x + tan ^(-1) 3x =(pi)/(4) , then x=

The value of x satisfying the equation tan^(-1)(2x)+tan^(-1)3x=(pi)/(4) is

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)