Home
Class 12
MATHS
lim(x->0) (((1+x)^(2/x))/(e^2))^(4/sinx)...

`lim_(x->0) (((1+x)^(2/x))/(e^2))^(4/sinx)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(((1+x)^((2)/(x)))/(e^(2)))^((4)/(sin x)) is

lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

lim_(x->0)(e^(2x)-1)/(3x)

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

lim_(xto0) ((e^x+e^-x-2)/(x^2))^(1//x^2) is equal to

lim_(xrarr0) (x^(2)-x)/(sinx)

If L=lim_(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx) , then the value of 1//(3L) is ________.

lim_(x rarr0)((1+x+x^(2))-e^(x))/(x^(2))

The value of lim_(x to 0) (e^x-e^sinx)/(2(x-sinx)) , is

lim_(x rarr0)((ln(1+x^(2)+x^(4)))/((e^(x)-1)x)