Home
Class 11
MATHS
int(0)^(oo)(1)/(1+e^(x))dx=...

`int_(0)^(oo)(1)/(1+e^(x))dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(x)/(1+x^(4))dx=

int_(0)^(oo)(1)/(3+x^(2))dx

I=int_(0)^(oo)(dx)/(1+e^(x))

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

The value of the integral int_(0)^(oo)(1)/(1+x^(4))dx is

int_(0)^(oo)((1)/(x^(2)+1))dx

int_(0)^(oo)(1)/(x+a)dx

int_(0)^(oo)x^(3)e^(-x^(2))dx=

If I_(1)=int_(0)^(oo) (dx)/(1+x^(4))dx and I_(2)underset(0)overset(oo)int dx"then"n (I_(1))/(I_(2))=