Home
Class 12
MATHS
Number of solutions of the equation tan...

Number of solutions of the equation `tan^(-1)((1)/(a-1))=tan^(-1)((1)/(x))+tan^(-1)((1)/(a^(2)-x+1))` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)

tan^(-1)((1)/(1+2x))+tan^(-1)((1)/(1+4x))=tan^(-1)((2)/(x^) (2)))

Arithmetic mean of the non-zero solutions of the equation tan^(-1)((1)/(2x+1))+tan^(-1)((1)/(4x+1))=tan^(-1)((2)/(x^(2)))

Number of solution(s) of the equation 2tan^(-1)(2x-1)=cos^(-1)(x) is :

The number of solutions of the equation tan^(-1)(x+1)+tan^(-1)x+tan^(-1)(x-1)=tan^(-1)3

A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is