Home
Class 12
MATHS
int0^(pi/2)(x/(sinx))^2dx=...

`int_0^(pi/2)(x/(sinx))^2dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the value of int_0^pi(x/(1+sinx))^2dx=lambda , then find the value of the integral =int_0^pi[(2x^2*cos^2(x/2))/(1+sinx)^2]dx

int_0^(pi/2) cosx/(1+sinx)dx

Evaluate: int_0^(pi//2)x/(sinx+cosx)dx

Evaluate int_0^(pi/2) x/(sinx+cosx)dx

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

Prove that int_(0)^(tan^(-1)x)/x dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

int_(0)^(pi//2)e^(x)sinx dx=

int_(0)^(pi)(x)/(1+sinx)dx .

Evaluate : int_0^(pi/2) x sinx dx

Evaluate the following integral: int_0^(pi//2)x^2sinx\ dx