Home
Class 11
MATHS
Assume that f(1) = 0 and that for all in...

Assume that f(1) = 0 and that for all integers m and n f(m+n) = f(m) + f(n) + 3(4mn-1) then f(19) = मान लें कि f(1)= 0 और कि सभी पूर्णांकों के लिए m और n f(m+n) = f(m)+f(m)+3(4mn-1) फिर f(19)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(1) = 1 and f(n + 1) = 2 f(n) + 1, if n ge 1, then f(n) is.

f (1) = 1, n> = 1f (n + 1) = 2f (n) +1 then f (n) =

Given f(1)=2 and f(n+1)=(f(n)-1)/(f(n)+1)AA n in N then

If f(x)=[mx^(2)+n,x 1. For what integers m and n does both (lim)_(x rarr1)f(x)

Let f : N rarr N be a function such that f(m + n) = f(m) + f(n) for every m, n in N . If f(6) = 18 , then f(2).f(3) is equal to :

In Fig if F = 4N , m= 2 kg M = 4 kg then

Let f : N rarr R be a function such that f(1) + 2f(2) + 3f(3) + ....+nf(n)= n(n+1) f(n) , for n ge 2 and f(1) = 1 then