Home
Class 12
MATHS
If tan^(-1)((x^2-y^2)/(x^2+y^2))=a , pro...

If `tan^(-1)((x^2-y^2)/(x^2+y^2))=a` , prove that `(dy)/(dx)=x/y((1-tana))/((1+tana))` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan ^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a, prove that (dy)/(dx)=(x)/(y)((1-tan a))/((1+tan a))

If tan^-1((x^2 - y^2)/(x^2 + y^2)) = a , prove that dy/dx = x (1-tana)/(y (1+tana))

If tan^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a , show that (dy)/(dx)=(x(1-tana))/(y(1+tana)).

If tan^(-1)((x^(2)-2y^(2))/(x^(2)+2y^(2)))=a show that (dy)/(dx)=(x(1-tana))/(2y(1+tana))

If tan^(-1)((x^(2)-2y^(2))/(x^(2)+2y^(2)))=a,"show that "(dy)/(dx)=(x(1-tana))/(2y(1+tana))

If cos^(-1)((x^2-y^2)/(x^2+y^2))=tan^(-1)a , prove that (dy)/(dx)=y/xdot

If cos^(-1)((x^2-y^2)/(x^2+y^2))=tan^(-1)a , prove that (dy)/(dx)=y/xdot

If cos^(-1)((x^2-y^2)/(x^2+y^2))=tan^(-1)a , prove that (dy)/(dx)=y/xdot

if sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=c prove that (dy)/(dx)=(y)/(x)

If tan((x^(2)-y^(2))/(x^(2)+y^(2)))=a then prove that (dy)/(dx)=(y)/(x)