Home
Class 12
MATHS
Let A=Minimum(x^2-2x+7),x in R and B= ...

Let `A=`Minimum`(x^2-2x+7),x in R ` and `B=` Minimum`(x^2-2x+7),x in [2,oo),` then: (a)`(log)_((B-A))(A+B)` is not defined (b) `A+B=13` (c)`(log)_((2B-A))A<1` (d) `(log)_((2A-B))A >1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let X minimum (x^(2)-2x+7),c inRand B="Minimum"(x^(2)-2x+7),x in[2,oo), then:

Let X minimum (x^(2)-2x+7),c inRand B="Minimum"(x^(2)-2x+7),x in[2,oo), then:

Let A = MINIMUM (x^2-2x+7),x in R and B = MINIMUM ( x^2-2x+7),x in [2,oo), then: (log)_((B-A))(A+B) is not defined A+B=13 (log)_((2B-A))A 1

log_(x)((a+b)/(2))=(1)/(2)(log a+log_(8)b)

If x^(y)=e^(x-y), then (dy)/(dx) is (1+x)/(1+log x)(b)(1-log x)/(1+log x)(c) not defined (d) (log x)/((1+log x)^(2))

If b >1,sint >0,cost >0a n d(log)_b(sint)=x ,t h e n(log)_b(cost) is equal to (a) 1/2(log)_b(1-b^(2x)) (b) 2log(1-b^(x/2)) (log)_bsqrt(1-b^(2x)) (d) sqrt(1-x^2)

If b >1,sint >0,cost >0a n d(log)_b(sint)=x ,t h e n(log)_b(cost) is equal to 1/2(log)_b(a-b^(2x)) (b) 2log(1-b^(x/2)) (log)_bsqrt(1-b^(2x)) (d) sqrt(1-x^2)

If b >1,sint >0,cost >0a n d(log)_b(sint)=x ,t h e n(log)_b(cost) is equal to 1/2(log)_b(a-b^(2x)) (b) 2log(1-b^(x/2)) (log)_bsqrt(1-b^(2x)) (d) sqrt(1-x^2)

If b >1,sint >0,cost >0a n d(log)_b(sint)=x ,t h e n(log)_b(cost) is equal to 1/2(log)_b(a-b^(2x)) (b) 2log(1-b^(x/2)) (log)_bsqrt(1-b^(2x)) (d) sqrt(1-x^2)

lim_(x->oo)cot^(-1)(x^(-a)log_a x)/(sec^(-1)(a^xlog_x a)),(a >1) is equal to (a) 2 (b) 1 (c) (log)_a2 (d) 0