Home
Class 12
MATHS
[[1,-1],[2,3]]=[[1,0],[0,1]]" A,"R(2)rar...

[[1,-1],[2,3]]=[[1,0],[0,1]]" A,"R_(2)rarr R_(2)-2p_(B)quad

Promotional Banner

Similar Questions

Explore conceptually related problems

[[1,-1],[2,3]] = [[1,0],[0,1]] A, R_2 rarr R_2 - 2R_1 gives

[(1,-1),(2,3)]=[(1,0),(0,1)] A,R_(2) rarr R_(2)-2R_(1) gives

A=[[1,0-1,3]],R_(1)harr R_(2)

If A = [[1,-1,3] , [2,1,0] , [3,3,1]] then apply R_1 rarr R_2 and then C_1 rarr C_1 +2C_3 on A

On using clementary row operation R_1 to R_1-3 R_2 in the following matrix equation [[4,2],[3,3]]=[[1,2],[0,3]][[2,0],[1,1]] we have,

If A= [{:(1," 2",-1),(3,-2," 5"):}] , then R_(1) harr R_(2) and C_(1) rarr C_(1) + 2C_(3) given

If A= [{:(1," 2",-1),(3,-2," 5"):}] , then R_(1) harr R_(2) and C_(1) rarr C_(1) + 2C_(3) given

[[0,(-1)/(2),2],[(1)/(2),0,0],[-2,0,0]|quad 2) [[0,(1)/(2),1],[(-1)/(2),0,0],[-1,0,0]|quad 3([0,1,0],[-1,0,1],[0,-1,0])quad ([0,2,3],[-2,0,4],[-3,-4,0])

If A=[[1, 0], [-1, 3]] , then R_1 harr R_2 on A gives

For a matrix A=[[1,2r-1] , [0,1]] then prod_(r=1)^(60) [[1,2r-1] , [0,1]]=