Home
Class 12
MATHS
If the line x= alpha divides the area o...

If the line `x= alpha ` divides the area of region `R={(x,y)in R^(2): x^(3) le y le x ,0 le x le 1 } ` into two equal parts, then

A

`alpha^(4) + 4alpha^(2) - 1 = 0`

B

`0lt alpha le 1/2`

C

`2alpha ^(4) - 4alpha^(2) + 1 = 0`

D

`1/2 lt alpha lt 1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • AREA UNDER THE CURVE

    MOTION|Exercise EXERCISE - 4 LEVEL - I|11 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 4|4 Videos

Similar Questions

Explore conceptually related problems

If the line x = alpha divides the area of region R = {(x,y) in R^(2) : x^(0) le y le x, 0 le x le 1} into two equal parts, then

Find the area of region {(x,y):0leylex^(2)+1, 0 le y le x+ 1, 0 le x le 2} .

Find the area of the region {(x,y) : x^2 le y le x }

The area of the region {(x,y):x^(2)+y^(2) le 1 le x+y} , is

Find the area of the region [ (x,y) :x^2 le y le x )

Area of region {(x,y) in R^(2): y ge sqrt(|x+3|,)5y le x + 9 le 15}

Find the area of the region {(x,y):x^2 le y le |x| }.

The area of the region : R = {(x, y) : 5x^2 le y le 2x^2 + 9} is :