Home
Class 12
MATHS
If a(y+z)=b(z+x)=c(x+y) then show that (...

If `a(y+z)=b(z+x)=c(x+y)` then show that `(a-b)/(x^(2)-y^(2))=(b-c)/(y^(2)-z^(2))=(c-a)/(z^(2)-x^(2))]`

Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 1|36 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 2 (Level -I)|19 Videos
  • AREA UNDER THE CURVE

    MOTION|Exercise EXERCISE - 4 LEVEL - II|14 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise -4 (Level - II) ( Previous Year )|7 Videos

Similar Questions

Explore conceptually related problems

a(y+z)=x,b(z+x)=y,c(x+y)=z prove that (x^(2))/(a(1-bc))=(y^(2))/(b(1-ca))=(z^(2))/(c(1-ab))

If (x)/(a)=(y)/(b)=(z)/(c), then show that (x^(3)+a^(3))/(x^(2)+a^(2))+(y^(3)+b^(3))/(y^(2)+b^(2))+(z^(3)+c^(3))/(z^(2)+c^(2))=((x+y+z)^(3)+(a+b+c)^(2))/((x+b+z)^(2)+(a+b+c)^(2))

If a^(x)=b^(y)=c^(z) and b^(2)=ac, then show that y=(2zx)/(z+x)

If |(a,y,z),(x,b,z),(x,y,c)|=0 , then prove that (a)/(a-x)+(b)/(b-y)+(c)/(c-z)=2

a^(x)=b^(y)=c^(z) and b^(2)=ac then prove that (1)/(x)+(1)/(z)=(2)/(y)

if (x)/(a^(2)-b^(2))=(y)/(b^(2)-c^(2))=(z)/(c^(2)-a^(2)) , then prove that x+y+z=0.

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2)) is -1(b)0(c)1(d) None of these

If log x log y log z=(y-z)(z-x)(x-y) then a )x^(y)*y^(z)*z^(x)=1 b) x^(2)y^(2)z^(2)=1c)root(z)(x)*root(y)(y)*root(z)(z)1=d) None of these