Home
Class 12
MATHS
Given log(2) a = s, log(4) b = s^(2)" an...

Given `log_(2) a = s, log_(4) b = s^(2)" and " log_(c^(2)) (8) = 2/(s^(3) + 1)`.Write `log_(2). (a^(2)b^(2))/c^(4) ` as a function of 's' `(a,b,c, gt 0, c ne 1)`.

Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 1|36 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 2 (Level -I)|19 Videos
  • AREA UNDER THE CURVE

    MOTION|Exercise EXERCISE - 4 LEVEL - II|14 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise -4 (Level - II) ( Previous Year )|7 Videos

Similar Questions

Explore conceptually related problems

Given that log_(2)a=s,log_(4)b=5^(2) and log_(c^(2))(8)=(2)/(s^(3)+1) Write (log_(2)(a^(2)b^(3)))/(c^(4)) as a function of 's' (a,b,c>0,c!=1)

Given that log_2a=lamda,log_4b=lamda^2 and log_(c^2)(8)=2/(lamda^3+1) write log_2((a^2b^5)/5) as a function of lamda,(a,b,cgt0,cne1) .

log_(a)b=2,log_(b)c=2 and log_(3)c=3+log_(3)a then (a+b+c)=?

If x = log_(c) b + log_(b) c, y = log_(a) c + log_(c) a, z = log_(b) a + log_(a) b, then x^(2) + y^(2) + z^(2) - 4 =

If log_(a)b=1/2,log_(b)c=1/3" and "log_(c)a=(K)/(5) , then the value of K is

log_(e^(2))^(a^(b))*log_(a^(3))^(b^(c))log_(b^(4))^(e^(a))

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.