Home
Class 12
MATHS
log(10)^(2) x + log(10) x^(2) = log(10)^...

`log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1`

A

`1/5`

B

`1/6`

C

`1/7`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{10}^2 x + \log_{10} x^2 = \log_{10}^2 2 - 1 \), we can follow these steps: ### Step 1: Rewrite the logarithmic expressions We know that \( \log_{10} x^2 = 2 \log_{10} x \). Let \( A = \log_{10} x \). Thus, we can rewrite the equation as: \[ A^2 + 2A = \log_{10}^2 2 - 1 \] ### Step 2: Rearrange the equation Now, we can rearrange the equation to bring all terms to one side: \[ A^2 + 2A - \log_{10}^2 2 + 1 = 0 \] ### Step 3: Identify coefficients for the quadratic formula This is a quadratic equation in the form \( Ax^2 + Bx + C = 0 \), where: - \( A = 1 \) - \( B = 2 \) - \( C = -\log_{10}^2 2 + 1 \) ### Step 4: Apply the quadratic formula Using the quadratic formula \( A = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \): \[ A = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-\log_{10}^2 2 + 1)}}{2 \cdot 1} \] \[ A = \frac{-2 \pm \sqrt{4 + 4(\log_{10}^2 2 - 1)}}{2} \] \[ A = \frac{-2 \pm \sqrt{4\log_{10}^2 2}}{2} \] \[ A = -1 \pm \sqrt{\log_{10}^2 2} \] ### Step 5: Simplify the expression for A Since \( \sqrt{\log_{10}^2 2} = |\log_{10} 2| \) and since \( \log_{10} 2 \) is positive, we have: \[ A = -1 + \log_{10} 2 \quad \text{or} \quad A = -1 - \log_{10} 2 \] ### Step 6: Convert back to x Recall that \( A = \log_{10} x \). Therefore: 1. For \( A = -1 + \log_{10} 2 \): \[ \log_{10} x = -1 + \log_{10} 2 \implies \log_{10} x = \log_{10} \frac{2}{10} \implies x = \frac{2}{10} = \frac{1}{5} \] 2. For \( A = -1 - \log_{10} 2 \): \[ \log_{10} x = -1 - \log_{10} 2 \implies \log_{10} x = \log_{10} \frac{1}{10 \cdot 2} \implies x = \frac{1}{20} \] ### Final Solutions Thus, the values of \( x \) are: \[ x = \frac{1}{5} \quad \text{and} \quad x = \frac{1}{20} \] ---
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 2 (Level -I)|19 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 2 (Level -II)|11 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 4|4 Videos
  • AREA UNDER THE CURVE

    MOTION|Exercise EXERCISE - 4 LEVEL - II|14 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise -4 (Level - II) ( Previous Year )|7 Videos

Similar Questions

Explore conceptually related problems

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

If 3 log_(10) (x^(2) y) = 4 + 2 log_(10) x - log_(10) y , where x and y are both + ve, and x - y = 2 sqrt(6) , then the value of x is

Solution set of the in equality log_(10^(2)) x-3(log_(10)x)( log_(10)(x-2))+2 log_(10^(2))(x-2) lt 0 , is :

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

((log_(10)x)/(2))^(log_(10)^(2)x+log_(10)x^(2)-2)=log_(10)sqrt(x)

If log_(10 ) x - log_(10) sqrt(x) = (2)/(log_(10 x)) . The value of x is

Find 'x' satisfying the equation 4^(log_(10) x + 1) - 6^(log_(10)x) - 2.3 ^(log_(10)x^(2) + 2) = 0 .

The value of p in R for which the equation sin^(-1)((log_(10)x)^(2)-2log_(10)x+2)+tan^(-1)((log_(10)x)^(2)-2log_(10)x+2)+cos^(-1)((log_(10)x)^(2)-2(log_(10)x))=p possess solution is

(x-2)^(log_(10)^(2)(x-2)+log_(10)(x-2)^(5)-12)=10^(2log_(10)(x-2))

Positive numbers x,y backslash and backslash z satisfy xyz:)=(:10^(1) and (log_(10)x)*(log_(10)yz)+(log_(10)y)*(log_(10)z)=468. Find the value of (log_(10)x)^(2)+(log_(10)y)^(2)+(log_(10)z)^(2)

MOTION-BASIC MATHEMATIC & LOGARITHM -Exercise - 1
  1. Number of real solution(s) of the equation |x-3|^(3x^2-10x+3)=1 is :

    Text Solution

    |

  2. Number of real solution of the equation sqrt(log(10)(-x)) = log(10) sq...

    Text Solution

    |

  3. Solve for x: log(4) log(3) log(2) x = 0.

    Text Solution

    |

  4. 2 log(4) (4 - x) = 4 - log(2) ( - 2 - x).

    Text Solution

    |

  5. log(10)^(2) x + log(10) x^(2) = log(10)^(2) 2 - 1

    Text Solution

    |

  6. Solve log(2).(x-1)/(x-2) gt 0 or (x-1)/(x-2) gt 2^(0) .

    Text Solution

    |

  7. Solve (log)(0. 04)(x-1)geq(log)(0. 2)(x-1)

    Text Solution

    |

  8. Solve log(2)(x-1) gt 4.

    Text Solution

    |

  9. Solve log(x+3)(x^(2)-x) lt 1.

    Text Solution

    |

  10. How many digits are contained in the number 2^(75) ?

    Text Solution

    |

  11. Let m be the number of digits in 3^(40) and p be the number of zeroes...

    Text Solution

    |

  12. Given that log(10)(2) = 0.3010..., number of digits in the number 2000...

    Text Solution

    |

  13. If P is the number of natural numbers whose logarithms to the base 10 ...

    Text Solution

    |

  14. The number of real roots of the equation |x|^(2) -3|x| + 2 = 0, is

    Text Solution

    |

  15. Solution of |4x +3| + |3x - 4| = 12 is

    Text Solution

    |

  16. |(x-3)|+2|(x+1)|=4

    Text Solution

    |

  17. Solution of equation: |x|^(2) - |x|+4= 2 x^(2) - 3 |x| + 1

    Text Solution

    |

  18. If log(10) 2 = 0.3010 & log(10) 3 = 0.4771, find the value of log (10)...

    Text Solution

    |

  19. The value of the expression log(10) (tan 6^(@))+log(10) (tan 12^(@))+l...

    Text Solution

    |

  20. Let ABC be a triangle right at C. The value of (log(b+c)a+log(c-b)a)/(...

    Text Solution

    |