Home
Class 12
MATHS
If log(b) a. log(c ) a + log(a) b. log(c...

If `log_(b) a. log_(c ) a + log_(a) b. log_(c ) b + log_(a) c. log_(b) c = 3` (where a, b, c are different positive real number `ne 1`), then find the value of a b c.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_b a \cdot \log_c a + \log_a b \cdot \log_c b + \log_a c \cdot \log_b c = 3 \) where \( a, b, c \) are different positive real numbers not equal to 1, we will follow these steps: ### Step 1: Rewrite the logarithms using natural logarithms We can use the change of base formula for logarithms, which states that: \[ \log_b a = \frac{\ln a}{\ln b} \] Therefore, we can rewrite the equation as: \[ \frac{\ln a}{\ln b} \cdot \frac{\ln a}{\ln c} + \frac{\ln b}{\ln a} \cdot \frac{\ln b}{\ln c} + \frac{\ln c}{\ln a} \cdot \frac{\ln c}{\ln b} = 3 \] ### Step 2: Simplify the equation This can be simplified to: \[ \frac{\ln^2 a}{\ln b \cdot \ln c} + \frac{\ln^2 b}{\ln a \cdot \ln c} + \frac{\ln^2 c}{\ln a \cdot \ln b} = 3 \] Now, we can take the common denominator, which is \( \ln a \cdot \ln b \cdot \ln c \): \[ \frac{\ln^2 a \cdot \ln a + \ln^2 b \cdot \ln b + \ln^2 c \cdot \ln c}{\ln a \cdot \ln b \cdot \ln c} = 3 \] ### Step 3: Multiply both sides by the denominator Multiplying both sides by \( \ln a \cdot \ln b \cdot \ln c \) gives us: \[ \ln^2 a \cdot \ln c + \ln^2 b \cdot \ln c + \ln^2 c \cdot \ln b = 3 \cdot \ln a \cdot \ln b \cdot \ln c \] ### Step 4: Rearranging the equation Rearranging gives us: \[ \ln^2 a + \ln^2 b + \ln^2 c = 3 \cdot \ln a \cdot \ln b \cdot \ln c \] ### Step 5: Recognizing the identity This equation resembles the identity for sums of cubes: \[ x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x^2 + y^2 + z^2 - xy - xz - yz) \] If we let \( x = \ln a \), \( y = \ln b \), and \( z = \ln c \), we can conclude that: \[ \ln a + \ln b + \ln c = 0 \] ### Step 6: Exponentiating both sides Exponentiating both sides gives: \[ e^{\ln a + \ln b + \ln c} = e^0 \] This simplifies to: \[ abc = 1 \] ### Final Answer Thus, the value of \( abc \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 4|4 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 2 (Level -II)|11 Videos
  • AREA UNDER THE CURVE

    MOTION|Exercise EXERCISE - 4 LEVEL - II|14 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise -4 (Level - II) ( Previous Year )|7 Videos

Similar Questions

Explore conceptually related problems

If log_b a log_c a+log_a blog_c b+log_a clog_b c=3(where a,b,c are different positive real number !=1) then find the value of abc

If (log)_b a(log)_c a+(log)_a b(log)_c b+(log)_a c(log)_bc=3 (where a , b , c are different positive real numbers !=1), then find the value of a b c dot

log_(a)a*log_(c)a+log_(c)b*log_(a)b+log_(a)c*log_(b)c=3 (where a,b,c are different positive real nu then find the value of abc.

Show that log_(b)a log_(c)b log_(a)c=1

(1+log_(c)a)log_(a)x*log_(b)c=log_(b)x log_(a)x

If (1)/(log_(a) x) + (1)/(log_(c) x) = (2)/(log_(b)x ) then a, b, c, are in

log_(a)b xx log_(b)c xx log_(c) d xx log_(d)a is equal to

MOTION-BASIC MATHEMATIC & LOGARITHM -Exercise - 3
  1. Solve the equation 5^(x)root(x)(8^(x-1))=500

    Text Solution

    |

  2. Given that log2(3)=a,log3(5)=b,log7(2)=c, express the logrithm of the ...

    Text Solution

    |

  3. If log(b) a. log(c ) a + log(a) b. log(c ) b + log(a) c. log(b) c = 3 ...

    Text Solution

    |

  4. If (loga)/(b-c) = (logb)/(c-a) = (logc)/(a-b), then prove that a^(a)...

    Text Solution

    |

  5. If x = log(3) 4 " and " y = log(5) 3, find the value of log(3) 10 " an...

    Text Solution

    |

  6. If k^(log2 5)=16 , find the value of k^((log2 5)^2)

    Text Solution

    |

  7. If log(10) (x^(2) - 12x + 36) = 2 , find x

    Text Solution

    |

  8. 9^(1+log x)- 3^(1+log x) - 210 = 0 , where base of log is 3.

    Text Solution

    |

  9. Solve for x: log(4) log(3) log(2) x = 0.

    Text Solution

    |

  10. If log(e) log(5) [sqrt(2x - 2) +3 ] = 0

    Text Solution

    |

  11. Let a and b be real numbers greater than 1 for which there exists a po...

    Text Solution

    |

  12. Find the square of the sum of the roots of the equation log(3)x.log(...

    Text Solution

    |

  13. Find 'x' satisfying the equation 4^(log(10) x + 1) - 6^(log(10)x) - ...

    Text Solution

    |

  14. Given log(2) a = s, log(4) b = s^(2)" and " log(c^(2)) (8) = 2/(s^(3) ...

    Text Solution

    |

  15. prove that a^x - b^y = 0 where x = sqrt(loga b ) and y = sqrt(logb ...

    Text Solution

    |

  16. If x ,\ y >=0,(log)y x+(log)x y=(10)/3\ a n d\ x y=144 ,\ t h e n(x...

    Text Solution

    |

  17. log(x+1)(x^2+x-6)^2=4

    Text Solution

    |

  18. Solve the equation for x : log4+(1+1/(2x))log3=log(3x+27)

    Text Solution

    |

  19. The real x and y satisfy log(8) x + log(4) y^(2) = 5 " and " log(8) y ...

    Text Solution

    |

  20. If x=1+loga bc, y=1+logb ca, z=1+logc ab then prove that xyz=xy+yz+z...

    Text Solution

    |