Home
Class 12
MATHS
Find 'x' satisfying the equation 4^(lo...

Find 'x' satisfying the equation
`4^(log_(10) x + 1) - 6^(log_(10)x) - 2.3 ^(log_(10)x^(2) + 2) = 0 .`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ 4^{(\log_{10} x + 1)} - 6^{(\log_{10} x)} - 2 \cdot 3^{(\log_{10} x^2 + 2)} = 0, \] we will follow these steps: ### Step 1: Rewrite the equation We can rewrite the equation as: \[ 4^{\log_{10} x} \cdot 4^1 - 6^{\log_{10} x} - 2 \cdot 3^{(\log_{10} x^2 + 2)} = 0. \] This simplifies to: \[ 4 \cdot 4^{\log_{10} x} - 6^{\log_{10} x} - 2 \cdot 3^{(2 \log_{10} x + 2)} = 0. \] ### Step 2: Simplify the terms Using the logarithmic identity \(a^{\log_b c} = c^{\log_b a}\): - \(4^{\log_{10} x} = x^{\log_{10} 4}\) - \(6^{\log_{10} x} = x^{\log_{10} 6}\) - \(3^{(2 \log_{10} x + 2)} = 3^{2 \log_{10} x} \cdot 3^2 = 9 \cdot x^{\log_{10} 9}\) Substituting these back into the equation gives: \[ 4 \cdot x^{\log_{10} 4} - x^{\log_{10} 6} - 18 \cdot x^{\log_{10} 3} = 0. \] ### Step 3: Factor out common terms Let \(y = x^{\log_{10} x}\). The equation becomes: \[ 4y^{\log_{10} 4} - y^{\log_{10} 6} - 18y^{\log_{10} 3} = 0. \] ### Step 4: Substitute \(t = \left(\frac{2}{3}\right)^{\log_{10} x}\) Let \(t = \left(\frac{2}{3}\right)^{\log_{10} x}\). Then we can rewrite the equation as: \[ 4t^2 - t - 18 = 0. \] ### Step 5: Solve the quadratic equation Using the quadratic formula \(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 4\), \(b = -1\), and \(c = -18\): \[ t = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 4 \cdot (-18)}}{2 \cdot 4} \] Calculating the discriminant: \[ 1 + 288 = 289 \] So: \[ t = \frac{1 \pm 17}{8}. \] This gives us two solutions: 1. \(t = \frac{18}{8} = \frac{9}{4}\) 2. \(t = \frac{-16}{8} = -2\) ### Step 6: Discard the negative solution Since \(t\) represents an exponential function, it must be positive. Therefore, we discard \(t = -2\). ### Step 7: Solve for \(x\) Now we have: \[ \left(\frac{2}{3}\right)^{\log_{10} x} = \frac{9}{4}. \] Taking logarithm on both sides: \[ \log_{10} x = \log_{10} \left(\frac{9}{4}\right) \cdot \frac{1}{\log_{10} \left(\frac{2}{3}\right)}. \] ### Step 8: Calculate \(x\) Using properties of logarithms: \[ x = 10^{\log_{10} \left(\frac{9}{4}\right) \cdot \frac{1}{\log_{10} \left(\frac{2}{3}\right)}}. \] This leads to: \[ x = \frac{9}{4} \text{ (as we can simplify further)}. \] ### Final Result Thus, the solution for \(x\) is: \[ x = \frac{1}{100} = 0.01. \]
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 4|4 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 2 (Level -II)|11 Videos
  • AREA UNDER THE CURVE

    MOTION|Exercise EXERCISE - 4 LEVEL - II|14 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise -4 (Level - II) ( Previous Year )|7 Videos

Similar Questions

Explore conceptually related problems

FInd 'x' satisfying the equation 4^(log_(10)x+1)-6^(log_(10)x)-2.3^(log10)x^(2)+2=0

4^(log_(10)x+1)-6^(log_(10)x)-2*3^(log_(10)x^(2)+2)=0. Find x

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is

Solve the following equations. (vii) 4^(log_10x+1)-6^(log_10x)-2.3^(log_10x^2+2)=0

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

(log_(10)100x)^(2)+(log_(10)10x)^(2)+log_(10)x<=14

The equation (log_(10)x+2)^(3)+(log_(10)x-1)^(3)=(2log_(10)x+1)3

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

The value 'x' satisfying the equation, 4^(log_(g)3)+9^(log_(2)4)=10^(log_(x)83)is ____

The value of ' x 'satisfying the equation,4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83) is

MOTION-BASIC MATHEMATIC & LOGARITHM -Exercise - 3
  1. If k^(log2 5)=16 , find the value of k^((log2 5)^2)

    Text Solution

    |

  2. If log(10) (x^(2) - 12x + 36) = 2 , find x

    Text Solution

    |

  3. 9^(1+log x)- 3^(1+log x) - 210 = 0 , where base of log is 3.

    Text Solution

    |

  4. Solve for x: log(4) log(3) log(2) x = 0.

    Text Solution

    |

  5. If log(e) log(5) [sqrt(2x - 2) +3 ] = 0

    Text Solution

    |

  6. Let a and b be real numbers greater than 1 for which there exists a po...

    Text Solution

    |

  7. Find the square of the sum of the roots of the equation log(3)x.log(...

    Text Solution

    |

  8. Find 'x' satisfying the equation 4^(log(10) x + 1) - 6^(log(10)x) - ...

    Text Solution

    |

  9. Given log(2) a = s, log(4) b = s^(2)" and " log(c^(2)) (8) = 2/(s^(3) ...

    Text Solution

    |

  10. prove that a^x - b^y = 0 where x = sqrt(loga b ) and y = sqrt(logb ...

    Text Solution

    |

  11. If x ,\ y >=0,(log)y x+(log)x y=(10)/3\ a n d\ x y=144 ,\ t h e n(x...

    Text Solution

    |

  12. log(x+1)(x^2+x-6)^2=4

    Text Solution

    |

  13. Solve the equation for x : log4+(1+1/(2x))log3=log(3x+27)

    Text Solution

    |

  14. The real x and y satisfy log(8) x + log(4) y^(2) = 5 " and " log(8) y ...

    Text Solution

    |

  15. If x=1+loga bc, y=1+logb ca, z=1+logc ab then prove that xyz=xy+yz+z...

    Text Solution

    |

  16. Find the product of the positive roots of the equation sqrt((2008))...

    Text Solution

    |

  17. Solve the following linear equations (i) |x| + 2 = 3 (ii) |x| - 2x...

    Text Solution

    |

  18. Let d = log(1//B) (C^(nA)), where A is the value of 'x' satisfying the...

    Text Solution

    |

  19. Let d = log(1//B) (C^(nA)), where A is the value of 'x' satisfying the...

    Text Solution

    |

  20. Let d = log(1//B) (C^(nA)), where A is the value of 'x' satisfying the...

    Text Solution

    |