Home
Class 12
MATHS
यदि C(0),C(1),C(2),....C(n) सभी (1+x)^(n...

यदि `C_(0),C_(1),C_(2),....C_(n)` सभी `(1+x)^(n)`, के प्रसार में द्विपद गुणांक हो, तो सिद्ध कीजिएः
`C_(1)+2C_(2)+3C_(3)+......+nC_(n)=n(2^(n)-1)`

A

`n.2^(n)`

B

`n.2^(n-1)`

C

`n.2^(n+1)`

D

None

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 1 Objective Problems ( SECTION - G : DIVISIBILITY CONCEPT & REMAINDER CONCEPT )|3 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 1 Objective Problems ( SECTION - H : BINOMIAL THEOREM FOR ANY INDEX )|2 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 1 Objective Problems (SECTION - D : NGT )|2 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 4|4 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos

Similar Questions

Explore conceptually related problems

C_(0)-3C_(1)+5c_(3)+....+(-1)^(n)(2n+1)C_(n) is equal to

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , prove that C_(1)^(2) + 2C_(2)^(2) + 3C_(3)^(2) + ..+ nC_(n)^(2) = ((2n-1)!)/(((n-1)!)^(2))

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+....+C_(n)x^(n) , then prove that : (i) C_(1)+2C_(2)+......+nC_(n)=n*2^(n-1) (ii) C_(1)-2C_(2)+......+(-1)^(n-1)nC_(n)=0

c_(1)^(2)+2C_(2)^(2)+3C_(3)^(2)+....+nC_(n)^(2)=((2n-1)!)/ ([(n-1)!^(2)))

If (1+x)^(n)=C_(0)+C_(1).x+C_(2).x^(2)+C_(3).x^(3)+......+C_(n).x^(n), then prove that C_(0)+2C_(1)+4C_(2)+6C_(3)+...+2n.C_(n)=1+n*2^(n)

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .