Home
Class 12
MATHS
Set of values of r for which, .^(18)C...

Set of values of r for which,
`.^(18)C_(r-2)+2.^(18)C_(r-1)+ ^(18)C_(r) ge .^(20)C_(13)` contains

A

4 elements

B

5 elements

C

7 elements

D

10 elements

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 1 Objective Problems ( SECTION - G : DIVISIBILITY CONCEPT & REMAINDER CONCEPT )|3 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 1 Objective Problems ( SECTION - H : BINOMIAL THEOREM FOR ANY INDEX )|2 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 1 Objective Problems (SECTION - D : NGT )|2 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 4|4 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos

Similar Questions

Explore conceptually related problems

The number of values in set of values of r for which ^(^^)23C_(r)+2.^(23)C_(r+1)+^(23)C_(r+2)>=^(25)C_(15) is

Element in set of values of r for which,18C_(r-2)+2.18C_(r-1)+18C_(r)>=20C_(13) is :

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

Set of value of r for which C(18,r-2)+2 C(18, r-1)+C(18,r)>=C(20,13) contains

Number of elements in set of value of r for which,18C_(r-2)+2*18C_(r-1)+18C_(r)>=20C_(13) satisfied

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r(0 le r le 30) for which S = .^(20)C_(r).^(10)C_(0) + .^(20)C_(r-1).^(10)C_(1) + ........ + .^(20)C_(0).^(10)C_(r) is minimum can not be

If .^(18)C_(r) = .^(18)C_(r+1) , then evaluate .^(r)C_(5) .

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r for which S = .^(20)C_(r.).^(10)C_(0)+.^(20)C_(r-1).^(10)C_(1)+"........".^(20)C_(0).^(10)C_(r) is maximum can not be

Find ""^(18)C_(3)+^(18)C_(2)