Home
Class 12
MATHS
The sum of the series .^(20)C(0)-.^(2...

The sum of the series
`.^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10)` is -

A

`-.^(20)C_(10)`

B

`1/2 .^(20)C_(10)`

C

0

D

`.^(20)C_(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum of the series \( \binom{20}{0} - \binom{20}{1} + \binom{20}{2} - \binom{20}{3} + \ldots - \binom{20}{10} \), we can follow these steps: ### Step 1: Recognize the Pattern The series can be represented as: \[ S = \sum_{r=0}^{10} (-1)^r \binom{20}{r} \] This indicates that we are summing the binomial coefficients with alternating signs. ### Step 2: Use Binomial Theorem Recall the binomial theorem: \[ (1 + x)^n = \sum_{r=0}^{n} \binom{n}{r} x^r \] We can use this theorem to evaluate our series by substituting \( x = -1 \): \[ (1 - 1)^{20} = \sum_{r=0}^{20} \binom{20}{r} (-1)^r \] This simplifies to: \[ 0 = \sum_{r=0}^{20} \binom{20}{r} (-1)^r \] ### Step 3: Split the Sum We can split the sum into two parts: \[ 0 = \left( \sum_{r=0}^{10} \binom{20}{r} (-1)^r \right) + \left( \sum_{r=11}^{20} \binom{20}{r} (-1)^r \right) \] Let \( S = \sum_{r=0}^{10} \binom{20}{r} (-1)^r \). The second part can be rewritten using the property of binomial coefficients: \[ \sum_{r=11}^{20} \binom{20}{r} (-1)^r = -\sum_{r=0}^{9} \binom{20}{20-r} (-1)^{20-r} = -\sum_{r=0}^{9} \binom{20}{r} (-1)^{r} = -S \] ### Step 4: Set Up the Equation Now we have: \[ 0 = S - S \implies 0 = 2S \] This implies: \[ S = 0 \] ### Step 5: Find the Relevant Sum However, we need to find the sum only up to \( \binom{20}{10} \). Since the series from \( \binom{20}{0} \) to \( \binom{20}{20} \) sums to zero, we can conclude that: \[ S = \binom{20}{0} - \binom{20}{1} + \binom{20}{2} - \binom{20}{3} + \ldots - \binom{20}{10} = -\binom{20}{11} - \binom{20}{12} - \ldots - \binom{20}{20} \] Thus, the sum we are looking for is half of the total sum of the coefficients from \( \binom{20}{0} \) to \( \binom{20}{10} \). ### Step 6: Final Calculation The final result, therefore, is: \[ S = -\frac{1}{2} \binom{20}{10} \] ### Conclusion The sum of the series \( \binom{20}{0} - \binom{20}{1} + \binom{20}{2} - \binom{20}{3} + \ldots - \binom{20}{10} \) is \( -\frac{1}{2} \binom{20}{10} \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MOTION|Exercise Exercise -4 (Level - II) ( Previous Year )|7 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise -3 ( Subjective )|43 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 4|4 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos

Similar Questions

Explore conceptually related problems

1.^(20)C_(1)-2.^(20)C_(2)+3.^(20)C_(3)-...-20.^(20)C_(20)

The sum of the series 20C_(0)-^(20)C_(1)+^(20)C_(2)-^(20)C_(3)+...-...+^(20)C_(10) is:

The sum of the series 2.""^(20)C_0+5.""^(20)C_1+8.""^(20)C_2+11.""^(20)C_(3)+.........62.^(20)C_20 is equal

The sum of the series S=20C_(0)-20C_(1)+20C_(2)-20C_(3)+...+20C_(10) is

The sum of the series 20C_(0)-20C_(1)+20C_(2)-20C_(3)+...+20C_(10) is

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

Evaluate: .^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r(0 le r le 30) for which S = .^(20)C_(r).^(10)C_(0) + .^(20)C_(r-1).^(10)C_(1) + ........ + .^(20)C_(0).^(10)C_(r) is minimum can not be

The sum of the series ""^20C_0+""^20C_1+""^20C_2+...+""^20C_9 is