Home
Class 12
MATHS
Express z=(-1+isqrt(3))/(1+i) in polar...

Express `z=(-1+isqrt(3))/(1+i)` in polar form and then find the modulus and argument of z. Hence deduce the value of cos `(5pi)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To express \( z = \frac{-1 + i\sqrt{3}}{1 + i} \) in polar form and find its modulus and argument, we will follow these steps: ### Step 1: Multiply by the Conjugate To simplify the expression, we multiply the numerator and the denominator by the conjugate of the denominator, which is \( 1 - i \). \[ z = \frac{(-1 + i\sqrt{3})(1 - i)}{(1 + i)(1 - i)} \] ### Step 2: Simplify the Denominator Calculating the denominator: \[ (1 + i)(1 - i) = 1^2 - i^2 = 1 - (-1) = 1 + 1 = 2 \] ### Step 3: Simplify the Numerator Now, for the numerator: \[ (-1 + i\sqrt{3})(1 - i) = -1 + i\sqrt{3} + i + \sqrt{3} = (-1 + \sqrt{3}) + (1 + \sqrt{3})i \] ### Step 4: Combine the Results Putting it all together, we have: \[ z = \frac{(-1 + \sqrt{3}) + (1 + \sqrt{3})i}{2} \] This can be rewritten as: \[ z = \frac{-1 + \sqrt{3}}{2} + i \cdot \frac{1 + \sqrt{3}}{2} \] ### Step 5: Find Modulus The modulus \( |z| \) is given by: \[ |z| = \sqrt{\left(\frac{-1 + \sqrt{3}}{2}\right)^2 + \left(\frac{1 + \sqrt{3}}{2}\right)^2} \] Calculating each term: 1. \( \left(\frac{-1 + \sqrt{3}}{2}\right)^2 = \frac{(-1 + \sqrt{3})^2}{4} = \frac{1 - 2\sqrt{3} + 3}{4} = \frac{4 - 2\sqrt{3}}{4} = 1 - \frac{\sqrt{3}}{2} \) 2. \( \left(\frac{1 + \sqrt{3}}{2}\right)^2 = \frac{(1 + \sqrt{3})^2}{4} = \frac{1 + 2\sqrt{3} + 3}{4} = \frac{4 + 2\sqrt{3}}{4} = 1 + \frac{\sqrt{3}}{2} \) Adding these results: \[ |z|^2 = \left(1 - \frac{\sqrt{3}}{2}\right) + \left(1 + \frac{\sqrt{3}}{2}\right) = 2 \] Thus, \[ |z| = \sqrt{2} \] ### Step 6: Find Argument The argument \( \theta \) can be found using: \[ \tan \theta = \frac{y}{x} = \frac{\frac{1 + \sqrt{3}}{2}}{\frac{-1 + \sqrt{3}}{2}} = \frac{1 + \sqrt{3}}{-1 + \sqrt{3}} \] This simplifies to: \[ \tan \theta = \frac{1 + \sqrt{3}}{-1 + \sqrt{3}} = \frac{(1 + \sqrt{3})(-1 - \sqrt{3})}{(-1 + \sqrt{3})(-1 - \sqrt{3})} = \frac{-1 - \sqrt{3} + \sqrt{3} + 3}{1 - 3} = \frac{2}{-2} = -1 \] Thus, \( \theta = \tan^{-1}(-1) = -\frac{\pi}{4} \). ### Step 7: Polar Form The polar form of \( z \) is: \[ z = |z| \left( \cos \theta + i \sin \theta \right) = \sqrt{2} \left( \cos\left(-\frac{\pi}{4}\right) + i \sin\left(-\frac{\pi}{4}\right) \right) \] ### Step 8: Deduce \( \cos\left(\frac{5\pi}{12}\right) \) From the argument, we can deduce that: \[ \cos\left(\frac{5\pi}{12}\right) = \frac{\sqrt{3} - 1}{2\sqrt{2}} \] ### Summary of Results - Modulus: \( |z| = \sqrt{2} \) - Argument: \( \theta = -\frac{\pi}{4} \) - Polar Form: \( z = \sqrt{2} \left( \cos\left(-\frac{\pi}{4}\right) + i \sin\left(-\frac{\pi}{4}\right) \right) \) - Value of \( \cos\left(\frac{5\pi}{12}\right) = \frac{\sqrt{3} - 1}{2\sqrt{2}} \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 1 (OBJECTIVE PROBLEMS I JEE MAIN) - SECTIONS - A & B|4 Videos
  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 1 (OBJECTIVE PROBLEMS I JEE MAIN) - SECTIONS - C|1 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos

Similar Questions

Explore conceptually related problems

z=-sqrt(3)+i find modulus and argument

Find the modulus and argument of the following complex number: z= (1+i)^13/(1-i)^7

Find the modulus and the arguments of the complex number z=-sqrt(3)+i

Find the modulus and argument of the complex number z =(i^2 +i^3)/(i^4 +i^5)

Express sin(pi)/(5)+i(1-cos(pi)/(5)) in polar form.

Find the modulus and the arguments of the complex number z=-1quad -i sqrt(3)

Find the modulus and argument of the following complex number: z=-sqrt(3)+i

Find the modulus and principal argument of (1+i) and hence express it in the polar form.

Find modulus and argument for z=1-sin alpha+i cos alpha,alpha in(0,2 pi)

MOTION-COMPLEX NUMBER -EXERCISE - 4 (LEVEL -II) PREVIOUS YEAR - JEE ADVANCED
  1. Express z=(-1+isqrt(3))/(1+i) in polar form and then find the modulu...

    Text Solution

    |

  2. If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition tha...

    Text Solution

    |

  3. A man walks a distance of 3 units from the origin towards the North...

    Text Solution

    |

  4. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  5. A particle P starts from the point z(0)=1+2i, where i=sqrt(-1). It mov...

    Text Solution

    |

  6. Let A ,B ,C be three sets of complex number as defined below A={z : I ...

    Text Solution

    |

  7. Let A,B,C be three sets of complex number as defined below A={z:lm ...

    Text Solution

    |

  8. Let A,B,C be three sets of complex number as defined below A={z:lm ...

    Text Solution

    |

  9. Let z=x+i y be a complex number where xa n dy are integers. Then, the ...

    Text Solution

    |

  10. Let z=costheta+isintheta. Then the value of sum(m->1-15)Img(z^(2m-1)) ...

    Text Solution

    |

  11. Q. Let p and q real number such that p!= 0,p^2!=q and p^2!=-q. if alph...

    Text Solution

    |

  12. Let omega be a complex cube root unity with omega!=1. A fair die is th...

    Text Solution

    |

  13. Let z(1) and z(2) be two distinct complex numbers and z=(1-t)z(1)+iz(2...

    Text Solution

    |

  14. Let omega be the complex number " cos " ( 2pi)/(3) + isin (2pi)/(3)...

    Text Solution

    |

  15. Match the statement in Column I with those in Column II. [Note : He...

    Text Solution

    |

  16. Let a, b and c be three real numbers satisfying [a" "b" "c][[1,9,7],[...

    Text Solution

    |

  17. Let omega be the solution of x^(3)-1=0 with "Im"(omega) gt 0. If a=2 w...

    Text Solution

    |

  18. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  19. If z is any complex number satisfying abs(z-3-2i) le 2, where i=sqrt(-...

    Text Solution

    |

  20. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  21. Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numb...

    Text Solution

    |