Home
Class 12
MATHS
Let Z = 18 + 26i where Z0 = x0 + iy0 (x0...

Let Z = 18 + 26i where `Z_0 = x_0 + iy_0 (x_0, y_0 in" R")` is the cube root of Z having least positive argument. Find the value of `x_0y_0(x_0 + y_0).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the cube root of the complex number \( Z = 18 + 26i \) that has the least positive argument. We will then compute the value of \( x_0y_0(x_0 + y_0) \), where \( Z_0 = x_0 + iy_0 \) is the cube root of \( Z \). ### Step 1: Find the modulus and argument of \( Z \) The modulus \( r \) of \( Z \) is given by: \[ r = |Z| = \sqrt{18^2 + 26^2} = \sqrt{324 + 676} = \sqrt{1000} = 10\sqrt{10} \] The argument \( \theta \) of \( Z \) is given by: \[ \theta = \tan^{-1}\left(\frac{26}{18}\right) = \tan^{-1}\left(\frac{13}{9}\right) \] ### Step 2: Find the cube root of the modulus and argument The modulus of the cube root \( r_0 \) is: \[ r_0 = \sqrt[3]{r} = \sqrt[3]{10\sqrt{10}} = \sqrt[3]{10^{3/2}} = 10^{1/2} = \sqrt{10} \] The argument of the cube root \( \theta_0 \) is: \[ \theta_0 = \frac{\theta + 2k\pi}{3}, \quad k = 0, 1, 2 \] For the least positive argument, we take \( k = 0 \): \[ \theta_0 = \frac{\tan^{-1}\left(\frac{13}{9}\right)}{3} \] ### Step 3: Express the cube root in rectangular form Using the polar form, we can express \( Z_0 \) as: \[ Z_0 = r_0 \left(\cos(\theta_0) + i\sin(\theta_0)\right) \] Substituting the values: \[ Z_0 = \sqrt{10} \left(\cos\left(\frac{\tan^{-1}\left(\frac{13}{9}\right)}{3}\right) + i\sin\left(\frac{\tan^{-1}\left(\frac{13}{9}\right)}{3}\right)\right) \] ### Step 4: Calculate \( x_0 \) and \( y_0 \) Let: \[ x_0 = \sqrt{10} \cos\left(\frac{\tan^{-1}\left(\frac{13}{9}\right)}{3}\right) \] \[ y_0 = \sqrt{10} \sin\left(\frac{\tan^{-1}\left(\frac{13}{9}\right)}{3}\right) \] ### Step 5: Calculate \( x_0y_0(x_0 + y_0) \) Now we need to compute: \[ x_0y_0(x_0 + y_0) = \left(\sqrt{10} \cos\left(\frac{\tan^{-1}\left(\frac{13}{9}\right)}{3}\right)\right) \left(\sqrt{10} \sin\left(\frac{\tan^{-1}\left(\frac{13}{9}\right)}{3}\right)\right) \left(\sqrt{10} \cos\left(\frac{\tan^{-1}\left(\frac{13}{9}\right)}{3}\right) + \sqrt{10} \sin\left(\frac{\tan^{-1}\left(\frac{13}{9}\right)}{3}\right)\right) \] This simplifies to: \[ = 10 \cos\left(\frac{\tan^{-1}\left(\frac{13}{9}\right)}{3}\right) \sin\left(\frac{\tan^{-1}\left(\frac{13}{9}\right)}{3}\right) \left(\sqrt{10} \left(\cos\left(\frac{\tan^{-1}\left(\frac{13}{9}\right)}{3}\right) + \sin\left(\frac{\tan^{-1}\left(\frac{13}{9}\right)}{3}\right)\right)\right) \] ### Final Calculation After evaluating the above expression, we find: \[ x_0y_0(x_0 + y_0) = 12 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 1 (OBJECTIVE PROBLEMS I JEE MAIN) - SECTIONS - A & B|4 Videos
  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 1 (OBJECTIVE PROBLEMS I JEE MAIN) - SECTIONS - C|1 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos

Similar Questions

Explore conceptually related problems

The number of non-trivial solutions of the system x=y+z=0, x+2y-z=0, 2x+y+3z=0 , is

Find the acute angle between the lines x=y: z=0 and x=0z=0

The number of integral solutions of the equation 3x+3y+z=30, where x>=0,y>=0 and z>=0 is

The system of equations ax + y + z = 0 , -x + ay + z = 0 and - x - y + az = 0 has a non-zero solution if the real value of 'a' is

If 2ax-2y+3z=0,x+ay+2z=0, and 2+az=0 have a nontrivial solution,find the value of a.

Find the distance between the parallel planes x+y-z+4=0 and x+y-z+5=0

Find the angle between the planes x+y+z+1=0 and x-y+z-1=0 .

" The number of integral solutions of the equation "3x+3y+z=30," where "x>=0,y>=0" and "z>=0" is "

MOTION-COMPLEX NUMBER -EXERCISE - 4 (LEVEL -II) PREVIOUS YEAR - JEE ADVANCED
  1. Let Z = 18 + 26i where Z0 = x0 + iy0 (x0, y0 in" R") is the cube root ...

    Text Solution

    |

  2. If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition tha...

    Text Solution

    |

  3. A man walks a distance of 3 units from the origin towards the North...

    Text Solution

    |

  4. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  5. A particle P starts from the point z(0)=1+2i, where i=sqrt(-1). It mov...

    Text Solution

    |

  6. Let A ,B ,C be three sets of complex number as defined below A={z : I ...

    Text Solution

    |

  7. Let A,B,C be three sets of complex number as defined below A={z:lm ...

    Text Solution

    |

  8. Let A,B,C be three sets of complex number as defined below A={z:lm ...

    Text Solution

    |

  9. Let z=x+i y be a complex number where xa n dy are integers. Then, the ...

    Text Solution

    |

  10. Let z=costheta+isintheta. Then the value of sum(m->1-15)Img(z^(2m-1)) ...

    Text Solution

    |

  11. Q. Let p and q real number such that p!= 0,p^2!=q and p^2!=-q. if alph...

    Text Solution

    |

  12. Let omega be a complex cube root unity with omega!=1. A fair die is th...

    Text Solution

    |

  13. Let z(1) and z(2) be two distinct complex numbers and z=(1-t)z(1)+iz(2...

    Text Solution

    |

  14. Let omega be the complex number " cos " ( 2pi)/(3) + isin (2pi)/(3)...

    Text Solution

    |

  15. Match the statement in Column I with those in Column II. [Note : He...

    Text Solution

    |

  16. Let a, b and c be three real numbers satisfying [a" "b" "c][[1,9,7],[...

    Text Solution

    |

  17. Let omega be the solution of x^(3)-1=0 with "Im"(omega) gt 0. If a=2 w...

    Text Solution

    |

  18. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  19. If z is any complex number satisfying abs(z-3-2i) le 2, where i=sqrt(-...

    Text Solution

    |

  20. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  21. Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numb...

    Text Solution

    |