Home
Class 12
MATHS
Find the sum of the infinite series, s...

Find the sum of the infinite series,
`sinalpha+1/2 sin2alpha+1/2^2sin3alpha+1/2^3sin4alpha+.......oo.`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the infinite series \[ S = \sin \alpha + \frac{1}{2} \sin 2\alpha + \frac{1}{2^2} \sin 3\alpha + \frac{1}{2^3} \sin 4\alpha + \ldots \] we can use the properties of complex numbers and geometric series. ### Step 1: Rewrite the series using complex exponentials We can express the sine function in terms of complex exponentials: \[ \sin n\alpha = \frac{e^{i n \alpha} - e^{-i n \alpha}}{2i} \] Thus, we can write the series as: \[ S = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} \sin n\alpha = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} \cdot \frac{e^{i n \alpha} - e^{-i n \alpha}}{2i} \] ### Step 2: Split the series This can be split into two separate series: \[ S = \frac{1}{2i} \left( \sum_{n=1}^{\infty} \frac{e^{i n \alpha}}{2^{n-1}} - \sum_{n=1}^{\infty} \frac{e^{-i n \alpha}}{2^{n-1}} \right) \] ### Step 3: Recognize the geometric series The series \[ \sum_{n=1}^{\infty} x^n = \frac{x}{1-x} \quad \text{for } |x| < 1 \] can be applied here. For the first series, let \( x = \frac{e^{i \alpha}}{2} \): \[ \sum_{n=1}^{\infty} \left(\frac{e^{i \alpha}}{2}\right)^n = \frac{\frac{e^{i \alpha}}{2}}{1 - \frac{e^{i \alpha}}{2}} = \frac{e^{i \alpha}}{2 - e^{i \alpha}} \] For the second series, let \( x = \frac{e^{-i \alpha}}{2} \): \[ \sum_{n=1}^{\infty} \left(\frac{e^{-i \alpha}}{2}\right)^n = \frac{\frac{e^{-i \alpha}}{2}}{1 - \frac{e^{-i \alpha}}{2}} = \frac{e^{-i \alpha}}{2 - e^{-i \alpha}} \] ### Step 4: Substitute back into the expression for \( S \) Now substituting these results back into the expression for \( S \): \[ S = \frac{1}{2i} \left( \frac{e^{i \alpha}}{2 - e^{i \alpha}} - \frac{e^{-i \alpha}}{2 - e^{-i \alpha}} \right) \] ### Step 5: Simplify the expression To simplify this, we can find a common denominator: \[ S = \frac{1}{2i} \cdot \frac{e^{i \alpha}(2 - e^{-i \alpha}) - e^{-i \alpha}(2 - e^{i \alpha})}{(2 - e^{i \alpha})(2 - e^{-i \alpha})} \] This simplifies to: \[ S = \frac{1}{2i} \cdot \frac{2(e^{i \alpha} - e^{-i \alpha})}{(2 - e^{i \alpha})(2 - e^{-i \alpha})} \] ### Step 6: Recognize \( e^{i \alpha} - e^{-i \alpha} \) Using \( e^{i \alpha} - e^{-i \alpha} = 2i \sin \alpha \): \[ S = \frac{1}{2i} \cdot \frac{2 \cdot 2i \sin \alpha}{(2 - e^{i \alpha})(2 - e^{-i \alpha})} \] This simplifies to: \[ S = \frac{2 \sin \alpha}{(2 - e^{i \alpha})(2 - e^{-i \alpha})} \] ### Step 7: Final simplification The denominator can be simplified further. We have: \[ (2 - e^{i \alpha})(2 - e^{-i \alpha}) = 4 - 2(e^{i \alpha} + e^{-i \alpha}) + 1 = 5 - 4 \cos \alpha \] Thus, the final result for the sum of the infinite series is: \[ S = \frac{2 \sin \alpha}{5 - 4 \cos \alpha} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 1 (OBJECTIVE PROBLEMS I JEE MAIN) - SECTIONS - A & B|4 Videos
  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 1 (OBJECTIVE PROBLEMS I JEE MAIN) - SECTIONS - C|1 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos

Similar Questions

Explore conceptually related problems

Sum the series: sin alpha - sin 2alpha + sin 3alpha - sin 4alpha + ... to n terms.

Find the sum of the series sinalpha+sin(alpha+beta)+sin(alpha+2beta)+sin(alpha+3beta)+.....+sin(alpha+(n-1)beta)

Find the sum of the series sin^2alpha+sin^2(alpha+beta)+sin^2(alpha+2beta)…+sin^2(alpha +(n-1) beta)

Sum the infinite series : sinalpha+x sin (alpha+beta)+ x^2/(2!)sin(alpha+2beta)+x^3/(3!) sin (alpha+3beta)+..

Sum of n terms of the series sinalpha-sin(alpha+beta)+sin(alpha+2beta)-sin(alpha+3beta)+….

sin alpha=(1)/(2)sqrt(a)sin^(alpha)alpha-4sin^(3)alpha

Find the value of sin 2 alpha, if sin alpha+ cos alpha=(1)/(3) .

If sin alpha/2 + cos alpha/2=1.4 , then: sin alpha cos alpha =

If sin.alpha/2+cos.alpha/2=1.4, then: sinalpha=

If tanalpha=3, calculate : (2 sin 2alpha-3sin2alpha)/(4 sin2alpha+5cos2alpha) .

MOTION-COMPLEX NUMBER -EXERCISE - 4 (LEVEL -II) PREVIOUS YEAR - JEE ADVANCED
  1. Find the sum of the infinite series, sinalpha+1/2 sin2alpha+1/2^2sin...

    Text Solution

    |

  2. If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition tha...

    Text Solution

    |

  3. A man walks a distance of 3 units from the origin towards the North...

    Text Solution

    |

  4. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  5. A particle P starts from the point z(0)=1+2i, where i=sqrt(-1). It mov...

    Text Solution

    |

  6. Let A ,B ,C be three sets of complex number as defined below A={z : I ...

    Text Solution

    |

  7. Let A,B,C be three sets of complex number as defined below A={z:lm ...

    Text Solution

    |

  8. Let A,B,C be three sets of complex number as defined below A={z:lm ...

    Text Solution

    |

  9. Let z=x+i y be a complex number where xa n dy are integers. Then, the ...

    Text Solution

    |

  10. Let z=costheta+isintheta. Then the value of sum(m->1-15)Img(z^(2m-1)) ...

    Text Solution

    |

  11. Q. Let p and q real number such that p!= 0,p^2!=q and p^2!=-q. if alph...

    Text Solution

    |

  12. Let omega be a complex cube root unity with omega!=1. A fair die is th...

    Text Solution

    |

  13. Let z(1) and z(2) be two distinct complex numbers and z=(1-t)z(1)+iz(2...

    Text Solution

    |

  14. Let omega be the complex number " cos " ( 2pi)/(3) + isin (2pi)/(3)...

    Text Solution

    |

  15. Match the statement in Column I with those in Column II. [Note : He...

    Text Solution

    |

  16. Let a, b and c be three real numbers satisfying [a" "b" "c][[1,9,7],[...

    Text Solution

    |

  17. Let omega be the solution of x^(3)-1=0 with "Im"(omega) gt 0. If a=2 w...

    Text Solution

    |

  18. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  19. If z is any complex number satisfying abs(z-3-2i) le 2, where i=sqrt(-...

    Text Solution

    |

  20. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  21. Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numb...

    Text Solution

    |