Home
Class 12
MATHS
If omega!=1 is n^(t h) root of unity, th...

If `omega!=1` is `n^(t h)` root of unity, then value of `sum_(k=0)^(n-1)|z_1+omega^k z_2|^2i s` `n|z_1|^2+|z_2|^2)` (b) `|z_1|^2+|z_2|^2` `(z_1"|"+|z_2|)^2` (d) `n(|z_1|+|z_2|)^2`

A

`n(|z_1|^2+|z_2|^2)`

B

`|z_1|^2+|z_2|^2`

C

`(|z_1|+|z_2|)^2`

D

`n(|z_1|+|z_2|)^2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 1 (OBJECTIVE PROBLEMS I JEE MAIN) - SECTIONS - M, N & O|9 Videos
  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 1 (OBJECTIVE PROBLEMS I JEE MAIN) - SECTIONS - S|2 Videos
  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 1 (OBJECTIVE PROBLEMS I JEE MAIN) - SECTIONS -K|2 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos

Similar Questions

Explore conceptually related problems

If omega!=1 is n^(th) root of unity,then value of sum_(k=0)^(n-1)|z_(1)+omega^(k)z_(2)|^(2)is(a)n|z_(1)|^(2)+|z_(2)|^(2))(b)|z_(1)|^(2)+|z_(2)|^(2)(c)(z_(1)|+|z_(2)|)^(2)(d)n(|z_(1)|+|z_(2)|)^(2)

Prove that |z_1+z_2|^2+|z_1-z_2|^2 =2|z_1|^2+2|z_2|^2 .

Prove that |1-barz_1z_2|^2-|z_1-z_2|^2=(1-|z_1|^2)(1-|z_2|^2) .

If z_1,z_2,z_3,z_4 are imaginary 5th roots of unity, then the value of sum_(r=1)^(16)(z1r+z2r+z3r+z4r),i s 0 (b) -1 (c) 20 (d) 19

Prove that |z_1+z_2|^2 = |z_1|^2 + |z_2|^2 if z_1/z_2 is purely imaginary.

if omega is the nth root of unity and Z_1 , Z_2 are any two complex numbers , then probe that . Sigma_(n-1)^(k=0)| z_1+ omega^k z_2|^2=n{|z_1|^2+|z_2|^2} where n in N

If omega ne 1 is a cube root of unity and |z-1|^(2) + 2|z-omega|^(2) = 3|z - omega^(2)|^(2) then z lies on

If z_(1) and z_(2) are two n^(th) roots of unity, then arg (z_(1)/z_(2)) is a multiple of

If z_1 and z_2 are two complex numbers, then prove that |z_1 - z_2|^2 le (1+ k)|z_1|^2 +(1+K^(-1) ) |z_2|^2 AA k in R^(+) .